Project description:Rhododendron is well known woody plant, as having high ornamental and economic values. Heat stress is one of the important environmental stresses that effects Rhododendron growth. Recently, melatonin was reported to alleviate abiotic stress in plants. However, the role of melatonin in Rhododendron is still unknown. In the present study, the effect of melatonin on Rhododendron under heat stress and the potential mechanism was investigated. Through morphological characterization and chlorophyll a fluorescence analysis, 200µM was selected for the best melatonin concentration to mitigate heat stress in Rhododendron. To reveal the mechanism of melatonin priming alleviating the heat stress, the photosynthesis indexes, Rubisco activity and ATP content were detected in 25 ℃, 35 ℃ and 40 ℃. The results showed that melatonin improves electron transport rate (ETR), PSII and PSI activity, Rubisco activity and ATP content under high temperature stress. Furthermore, transcriptome analysis showed that a significant enrichment of differentially expressed genes in the photosynthesis pathway, and most of genes in photosynthesis pathway displayed a more significantly slight down-regulation under high temperature stress in melatonin-treatment plants, compared with melatonin-free plants. We identified PGR5……Together, these results demonstrate that melatonin could promote the photosynthetic electron transport, improve the enzymes activities in Calvin cycle and the production of ATP, and thereby increase photosynthetic efficiency and CO2 assimilation capacity under heat stress, through regulating the expression of some key genes, such as PGR5…Therefore, melatonin application displayed great potential to cope with the heat stress in Rhododendron.
2024-09-30 | GSE214428 | GEO
Project description:Low depth genome sequencing of Dendrocalamus strictus
| PRJNA839537 | ENA
Project description:Low depth genome sequencing of Dalbergia sissoo
| PRJNA708168 | ENA
Project description:Low depth genome sequencing of Drepanostachyum falcatum
Project description:We developed a low input, low sequencing depth method, EpiMethylTag that combines ATAC-seq or ChIP-seq (M-ATAC or M-ChIP) with bisulfite conversion, to simultaneously examine accessibility/TF binding and methylation on the same DNA.
2019-10-01 | GSE129673 | GEO
Project description:Low depth genome sequencing of Hui nationality in China
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:To interrogate single-base resolution 6mA sites in the genome-wide, we develop DA-6mA-seq (DpnI-Assisted N6-methylAdenine sequencing), an optimized sequencing method taking advantage of restriction enzyme DpnI, which exclusively cleaves methylated adenine sites. We find DpnI also recognizes other sequence motifs besides the canonical GATC restriction sites, largely expanding the application range of this method. DA-6mA-seq requires less starting material and lower sequencing depth than previous methods, but achieves higher sensitivity, providing a good strategy to identify 6mA in large genome with a low abundance of 6mA. We rebuild the 6mA maps of Chlamydomonas by DA-6mA-seq and then apply this method to another two eukaryotic organisms, Plasmodium and Penicillium. Further analysis reveals most 6mA sites are symmetric at various sequence contexts, suggesting 6mA may function as a new heritable epigenetic mark in eukaryotes. A new sequencing method is developed to detect 6mA in eukaryotes