Project description:The development of infant gut microbiota is strongly influenced by nutrition. Human milk oligosaccharides (HMOSs) in breast milk selectively promote the growth of glycan-degrading microbes, which lays the basis of the microbial network. In this study, we investigated the trophic interaction between Bacteroides thetaiotaomicron and the butyrate-producing Anaerostipes caccae in the presence of early-life carbohydrates. Anaerobic bioreactors were set up to study the monocultures of B. thetaiotaomicron and the co-cultures of B. thetaiotaomicron with A. caccae in minimal media supplemented with lactose or a total human milk carbohydrate fraction. Bacterial growth (qPCR), metabolites (HPLC), and HMOS utilization (LC-ESI-MS2) were monitored. B. thetaiotaomicron displayed potent glycan catabolic capability with differential preference in degrading specific low molecular weight HMOSs, including the neutral trioses (2'-FL and 3-FL), neutral tetraoses (DFL, LNT, LNnT), neutral pentaoses (LNFP I, II, III, V), and acidic trioses (3'-SL and 6'-SL). In contrast, A. caccae was not able to utilize lactose and HMOSs. However, the signature metabolite of A. caccae, butyrate, was detected in co-culture with B. thetaiotaomicron. As such, A. caccae cross-fed on B. thetaiotaomicron-derived monosaccharides, acetate, and d-lactate for growth and concomitant butyrate production. This study provides a proof of concept that B. thetaiotaomicron could drive the butyrogenic metabolic network in the infant gut.
Project description:Two groups of unknown bacteria, which phenotypically resemble members of the Bacteroides fragilis group but phylogenetically display >5% 16S rRNA gene sequence divergence from their nearest validly described species, Bacteroides thetaiotaomicron, were characterized by phenotypic and molecular taxonomic methods. Phylogenetically and phenotypically, the unidentified bacteria displayed a relatively close association with each other. However, a 16S rRNA gene sequence divergence of approximately 4% between the two unknown bacteria, as well as distinguishable biochemical characteristics, demonstrates that these organisms are genotypically and phenotypically distinct, and each group may represent a previously unknown subline within the Bacteroides phylogenetic cluster. Subsequent DNA-DNA hybridization studies confirmed that the two novel organisms were indeed distinct from each other. The previously described species closest to both of them is B. thetaiotaomicron (approximately 94% sequence similarity), but they can be differentiated easily from B. thetaiotaomicron by virtue of not utilizing trehalose. DNA-DNA pairing studies also documented the separateness of the unknown species and B. thetaiotaomicron. Based on the phenotypic and phylogenetic findings, two new species, "Bacteroides nordii" sp. nov. and "Bacteroides salyersae" sp. nov, are proposed. The G+C content of the DNA is 41.4 mol% for Bacteroides nordii and 42.0 mol% for Bacteroides salyersae. The type strains of Bacteroides nordii and Bacteroides salyersae are WAL 11050 (ATCC BAA-998 or CCUG 48943) and WAL 10018 (ATCC BAA-997 or CCUG 48945), respectively.
Project description:During short-lived perturbations, such as inflammation, the gut microbiota exhibits resilience and reverts to its original configuration. Although microbial access to the micronutrient iron is decreased during colitis, pathogens can scavenge iron by using siderophores. How commensal bacteria acquire iron during gut inflammation is incompletely understood. Curiously, the human commensal Bacteroides thetaiotaomicron does not produce siderophores but grows under iron-limiting conditions using enterobacterial siderophores. Using RNA-seq, we identify B. thetaiotaomicron genes that were upregulated during Salmonella-induced gut inflammation and were predicted to be involved in iron uptake. Mutants in the xusABC locus (BT2063-2065) were defective for xenosiderophore-mediated iron uptake in vitro. In the normal mouse gut, the XusABC system was dispensable, while a xusA mutant colonized poorly during colitis. This work identifies xenosiderophore utilization as a critical mechanism for B. thetaiotaomicron to sustain colonization during inflammation and suggests a mechanism of how interphylum iron metabolism contributes to gut microbiota resilience.