Unknown

Dataset Information

0

Bacteroides thetaiotaomicron Fosters the Growth of Butyrate-Producing Anaerostipes caccae in the Presence of Lactose and Total Human Milk Carbohydrates.


ABSTRACT: The development of infant gut microbiota is strongly influenced by nutrition. Human milk oligosaccharides (HMOSs) in breast milk selectively promote the growth of glycan-degrading microbes, which lays the basis of the microbial network. In this study, we investigated the trophic interaction between Bacteroides thetaiotaomicron and the butyrate-producing Anaerostipes caccae in the presence of early-life carbohydrates. Anaerobic bioreactors were set up to study the monocultures of B. thetaiotaomicron and the co-cultures of B. thetaiotaomicron with A. caccae in minimal media supplemented with lactose or a total human milk carbohydrate fraction. Bacterial growth (qPCR), metabolites (HPLC), and HMOS utilization (LC-ESI-MS2) were monitored. B. thetaiotaomicron displayed potent glycan catabolic capability with differential preference in degrading specific low molecular weight HMOSs, including the neutral trioses (2'-FL and 3-FL), neutral tetraoses (DFL, LNT, LNnT), neutral pentaoses (LNFP I, II, III, V), and acidic trioses (3'-SL and 6'-SL). In contrast, A. caccae was not able to utilize lactose and HMOSs. However, the signature metabolite of A. caccae, butyrate, was detected in co-culture with B. thetaiotaomicron. As such, A. caccae cross-fed on B. thetaiotaomicron-derived monosaccharides, acetate, and d-lactate for growth and concomitant butyrate production. This study provides a proof of concept that B. thetaiotaomicron could drive the butyrogenic metabolic network in the infant gut.

SUBMITTER: Chia LW 

PROVIDER: S-EPMC7601031 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

<i>Bacteroides thetaiotaomicron</i> Fosters the Growth of Butyrate-Producing <i>Anaerostipes caccae</i> in the Presence of Lactose and Total Human Milk Carbohydrates.

Chia Loo Wee LW   Mank Marko M   Blijenberg Bernadet B   Aalvink Steven S   Bongers Roger S RS   Stahl Bernd B   Knol Jan J   Belzer Clara C  

Microorganisms 20201001 10


The development of infant gut microbiota is strongly influenced by nutrition. Human milk oligosaccharides (HMOSs) in breast milk selectively promote the growth of glycan-degrading microbes, which lays the basis of the microbial network. In this study, we investigated the trophic interaction between <i>Bacteroides thetaiotaomicron</i> and the butyrate-producing <i>Anaerostipes caccae</i> in the presence of early-life carbohydrates. Anaerobic bioreactors were set up to study the monocultures of <i  ...[more]

Similar Datasets

2013-01-01 | GSE26772 | GEO
2013-01-01 | E-GEOD-26772 | biostudies-arrayexpress
| S-EPMC8063638 | biostudies-literature
| PRJNA34999 | ENA
| S-EPMC6548854 | biostudies-literature
| PRJNA715234 | ENA
| S-EPMC5945754 | biostudies-literature
| S-EPMC11321409 | biostudies-literature
| PRJNA1076119 | ENA
| PRJNA39999 | ENA