Project description:Purpose: Serine-threonine kinase receptor-associated protein (STRAP) plays an important role in neural development but also in tumor growth. Neuroblastoma, a tumor of neural crest origin, is the most common extracranial malignancy of childhood, and it continues to carry a poor prognosis. The recent discovery of the role of STRAP in another pediatric solid tumor, osteosarcoma, and its known function in neural development, led us to investigate the role of STRAP in neuroblastoma tumorigenesis. Methods: STRAP protein expression was abrogated in two human neuroblastoma cell lines, SK-N-AS (AS) and SK-N-BE(2). Methods included transient knockdown with siRNA, stable knockdown with shRNA lentiviral transfection, and CRISPR-Cas9 genetic knockout of STRAP. STRAP knockdown and knockout cells were examined for phenotypic alterations in vitro and tumor growth in vivo. Results: Cell proliferation, viability, motility, and growth were significantly decreased in STRAP knockout compared to wild-type cells. Indicators of stemness, including mRNA abundance of common stem cell markers Oct4, Nanog, and Nestin, the percentage of cells expressing CD133 on their surface, and the ability to form tumorspheres, were significantly decreased in the STRAP KO cells. In vivo, AS STRAP knockout cells formed tumors less readily than wild-type tumor cells. Conclusion: These novel findings demonstrated that STRAP plays a role in tumorigenesis and maintenance of neuroblastoma stemness.
Project description:Background: Serine-threonine kinase receptor-associated protein (STRAP) plays an important role in neural development but also in tumor growth. Neuroblastoma, a tumor of neural crest origin, is the most common extracranial solid malignancy of childhood and it continues to carry a poor prognosis. The recent discovery of the role of STRAP in another pediatric solid tumor, osteosarcoma, and the known function of STRAP in neural development, led us to investigate the role of STRAP in neuroblastoma tumorigenesis. Methods: STRAP protein expression was abrogated in two human neuroblastoma cell lines, SK-N-AS and SK-N-BE(2), using transient knockdown with siRNA, stable knockdown with shRNA lentiviral transfection, and CRISPR-Cas9 genetic knockout. STRAP knockdown and knockout cells were examined for phenotypic alterations in vitro and tumor growth in vivo. Results: Cell proliferation, motility, and growth were significantly decreased in STRAP knockout compared to wild-type cells. Indicators of stemness, including mRNA abundance of common stem cell markers Oct4, Nanog, and Nestin, the percentage of cells expressing CD133 on their surface, and the ability to form tumorspheres were significantly decreased in the STRAP KO cells. In vivo, STRAP knockout cells formed tumors less readily than wild-type tumor cells. Conclusion: These novel findings demonstrated that STRAP plays a role in tumorigenesis and maintenance of neuroblastoma stemness.
Project description:Serine-threonine kinase receptor-associated protein (STRAP) is upregulated in breast, colorectal and lung cancers, promoting their growth. We identify the upregulation of STRAP in hepatocellular carcinomas. Elevated STRAP endows tumor cells with growth advantage by reprograming a variety of metabolic processes and signaling pathways critical for hepatocellular carcinoma progression. Especially, enhanced Wnt/β-catenin signaling is likely to be a major effector of its tumor-promoting role.
Project description:The purpose of this study was to understand how prevention of serine/threonine protein kinase (STPK) phosphorylation of PrrA impacts PrrA modulation of M. tuberculosis transcriptional response to nitric oxide.
Project description:The purpose of this study was to understand how prevention of serine/threonine protein kinase (STPK) phosphorylation of PrrA impacts PrrA modulation of M. tuberculosis transcriptional response to acidic pH and high chloride levels.
Project description:BackgroundSerine-threonine kinase receptor associated protein (STRAP), a scaffolding protein, is upregulated in many solid tumors. As such, we hypothesized that STRAP may be overexpressed in neuroblastoma tumors and may play a role in neuroblastoma tumor progression.MethodsWe examined two publicly available neuroblastoma patient databases, GSE49710 (n = 498) and GSE49711 (n = 498), to investigate STRAP expression in human specimens. SK-N-AS and SK-N-BE(2) human neuroblastoma cell lines were stably transfected with STRAP overexpression (OE) plasmid, and their resulting phenotype studied. PamChip® kinomic peptide microarray evaluated the effects of STRAP overexpression on kinase activation.ResultsIn human specimens, higher STRAP expression correlated with high-risk disease, unfavorable histology, and decreased overall neuroblastoma patient survival. STRAP OE in neuroblastoma cell lines led to increased proliferation, growth, supported a stem-like phenotype and activated downstream FAK targets. When FAK was targeted with the small molecule FAK inhibitor, PF-573,228, STRAP OE neuroblastoma cells had significantly decreased growth compared to control empty vector cells.ConclusionIncreased STRAP expression in neuroblastoma was associated with unfavorable tumor characteristics. STRAP OE resulted in increased kinomic activity of FAK. These findings suggest that the poorer outcomes in neuroblastoma tumors associated with STRAP overexpression may be secondary to FAK activation.