Project description:Four subsamples of stromatolites from Schoenmakerskop pool (Flags 1, 3, 7,10), plus Combiflash C18 chromatographic fractions from one bulk sample extract.
Project description:Evaluation of short-read-only, long-read-only, and hybrid assembly approaches on metagenomic samples demonstrating how they affect gene and protein prediction which is relevant for downstream functional analyses. For a human gut microbiome sample, we use complementary metatranscriptomic, and metaproteomic data to evaluate the metagenomic-based protein predictions.
Project description:Single stranded DNA viruses have been previously shown to populate the oceans on a global scale, and are endemic in microbialites of both marine and freshwater systems. We undertook for the first time direct viral metagenomic shotgun sequencing to explore the diversity of viruses in the modern stromatolites of Shark Bay Australia. The data indicate that Shark Bay marine stromatolites have similar diversity of ssDNA viruses to that of Highbourne Cay, Bahamas. ssDNA viruses in cluster uniquely in Shark Bay and Highbourne Cay, potentially due to enrichment by phi29-mediated amplification bias. Further, pyrosequencing data was assembled from the Shark Bay systems into two putative viral genomes that are related to Genomoviridae family of ssDNA viruses. In addition, the cellular fraction was shown to be enriched for antiviral defense genes including CRISPR-Cas, BREX (bacteriophage exclusion), and DISARM (defense island system associated with restriction-modification), a potentially novel finding for these systems. This is the first evidence for viruses in the Shark Bay stromatolites, and these viruses may play key roles in modulating microbial diversity as well as potentially impacting ecosystem function through infection and the recycling of key nutrients.
Project description:The sequenced genome of the poly-extremophile Exiguobacterium sp. S17, isolated from modern stromatolites at Laguna Socompa (3,570 m), a High-Altitude Andean Lake (HAAL) in Argentinean Puna revealed a putative proteorhodopsin-encoding gene. The HAAL area is exposed to the highest UV irradiation on Earth, making the microbial community living in the stromatolites test cases for survival strategies under extreme conditions. The heterologous expressed protein E17R from Exiguobacterium (248 amino acids, 85% sequence identity to its ortholog ESR from E. sibiricum) was assembled with retinal displaying an absorbance maximum at 524 nm, which makes it a member of the green-absorbing PR-subfamily. Titration down to low pH values (eventually causing partial protein denaturation) indicated a pK value between two and three. Global fitting of data from laser flash-induced absorption changes gave evidence for an early red-shifted intermediate (its formation being below the experimental resolution) that decayed (τ1 = 3.5 μs) into another red-shifted intermediate. This species decayed in a two-step process (τ2 = 84 μs, τ3 = 11 ms), to which the initial state of E17-PR was reformed with a kinetics of 2 ms. Proton transport capability of the HAAL protein was determined by BLM measurements. Additional blue light irradiation reduced the proton current, clearly identifying a blue light absorbing, M-like intermediate. The apparent absence of this intermediate is explained by closely matching formation and decay kinetics.
Project description:Conical stromatolites are thought to be robust indicators of the presence of photosynthetic and phototactic microbes in aquatic environments as early as 3.5 billion years ago. However, phototaxis alone cannot explain the ubiquity of disrupted, curled, and contorted laminae in the crests of many Mesoproterozoic, Paleoproterozoic, and some Archean conical stromatolites. Here, we demonstrate that cyanobacterial production of oxygen in the tips of modern conical aggregates creates contorted laminae and submillimeter-to-millimeter-scale enmeshed bubbles. Similarly sized fossil bubbles and contorted laminae may be present only in the crestal zones of some conical stromatolites 2.7 billion years old or younger. This implies not only that cyanobacteria built Proterozoic conical stromatolites but also that fossil bubbles may constrain the timing of the evolution of oxygenic photosynthesis.