Project description:Genomic sequencing of many thousands of tumors has revealed many genes associated with specific types of cancer. Similarly, large scale CRISPR functional genomics efforts have mapped genes required for proliferation or survival in hundreds of cancer cell lines. Despite this, for specific disease subtypes, such as metastatic prostate cancer, it is likely that there exist many undiscovered tumor specific genetic dependencies, such as prostate cancer specific drivers, that represent drug targets. To identify such genetic dependencies, we performed genome-scale CRISPRi screens in metastatic prostate cancer models. We then created a pipeline in which we integrated publicly available pan-cancer functional genomics data with our metastatic prostate cancer functional and clinical genomics data to identify genes that can drive aggressive prostate cancer phenotypes. Our integrative analysis of these data revealed two known prostate cancer specific driver genes, AR and HOXB13, as the top two hits and also nominated a number of unexpected genes. In this study we highlight the strength of an integrated clinical and functional genomics pipeline and focus on two hit genes, KIF4A and WDR62. We demonstrate that both KIF4A and WDR62 drive aggressive prostate cancer phenotypes in vitro and in vivo in multiple models, irrespective of AR-status, and are also associated with poor patient outcome.
Project description:Genomic sequencing of many thousands of tumors has revealed many genes associated with specific types of cancer. Similarly, large scale CRISPR functional genomics efforts have mapped genes required for proliferation or survival in hundreds of cancer cell lines. Despite this, for specific disease subtypes, such as metastatic prostate cancer, it is likely that there exist many undiscovered tumor specific genetic dependencies, such as prostate cancer specific drivers, that represent drug targets. To identify such genetic dependencies, we performed genome-scale CRISPRi screens in metastatic prostate cancer models. We then created a pipeline in which we integrated publicly available pan-cancer functional genomics data with our metastatic prostate cancer functional and clinical genomics data to identify genes that can drive aggressive prostate cancer phenotypes. Our integrative analysis of these data revealed two known prostate cancer specific driver genes, AR and HOXB13, as the top two hits and also nominated a number of unexpected genes. In this study we highlight the strength of an integrated clinical and functional genomics pipeline and focus on two hit genes, KIF4A and WDR62. We demonstrate that both KIF4A and WDR62 drive aggressive prostate cancer phenotypes in vitro and in vivo in multiple models, irrespective of AR-status, and are also associated with poor patient outcome.
Project description:Prostate cancer is readily curable if detected early. The overall goal of this study is to conduct integrative profiling of tumor and blood genomics and transcriptomics.
Project description:The androgen receptor (AR) is the major therapeutic target in prostate cancer, although the important targets of the AR have remained obscure. Here we report a detailed genomic profile of AR signalling and find that the AR directly regulates glycolysis, anabolic metabolism and cell cycle regulators in prostate cancer. This coordinated transcriptional program promotes cancer cell proliferation and enhances the macromolecular synthesis needed to produce daughter cells. Clinical gene expression profiles and mechanistic studies highlight the importance of CAMKK2, an AR target which regulates both cell proliferation and metabolism. Thus our genomics study identifies a direct link between AR signalling and aerobic glycolysis (the Warburg effect), providing a new perspective on the oncogenic function of the AR in prostate cancer. 8 Samples: Chromatin IP using AR and PolII in stimulated and unstimulated LNCaP and VCaP cells.
Project description:This clinical trial studies the effectiveness of a web-based cancer education tool called Helping Oncology Patients Explore Genomics (HOPE-Genomics) in improving patient knowledge of personal genomic testing results and cancer and genomics in general. HOPE-Genomics is a web-based education tool that teaches cancer/leukemia patients, and patients who may be at high-risk for developing cancer, about genomic testing and provide patients with information about their own genomic test results. The HOPE-Genomics tool may improve patient’s genomic knowledge and quality of patient-centered care. In addition, it may also improve education and care quality for future patients.
Project description:Prostate cancer cells (PC3) were treated with purified human recombinant CRISP3 protein or vehicle control for 4 hours before whole cell protein extraction
Project description:Genome-wide association studies (GWAS) are identifying genetic predisposition to various diseases. The rs1859962 single nucleotide polymorphism (SNP) part of the 17q24.3 locus is a risk factor for prostate cancer (PCa). It defines a 130kb linkage disequilibrium (LD) block that lies in a ~2Mb gene desert area. Despite a role for the proximal SOX9 gene in PCa development, the functional biology driving the risk of this 17q24.3 risk locus is unknown. In the present study, we integrate genome-wide chromatin landscape datasets, namely epigenomes and chromatin openness from diverse cell-types to identify one PCa specific enhancer within the rs1859962 risk LD block. We reveal that this enhancer is part of a 1Mb chromatin loop with the SOX9 gene in PCa cells. The rs8072254 and rs1859961 SNPs part of this LD block map to this enhancer and impose allele-specific gene expression. The variant allele of rs1859961 directly decreases FoxA1 binding while increasing AP-1 binding compared to the reference allele. This latter is key in driving allele-specific gene expression. Together, our results demonstrate the risk associated with the PCa rs1859962 risk LD block is accounted for by multiple genetic variants mapping to a unique enhancer looping to the SOX9 oncogene. Allele-specific recruitment of the transcription factor AP-1 accounts in part for the increased enhancer activity ascribed to this PCa risk LD block. This further demonstrates that an integrative genomics approach can identify the functional biology disrupted by genetic risk-variants. Examination of histone modification H3K36me3 in the prostate cancer LNCaP cell line under DHT treatment.