Project description:Skeletal aging and disease are associated with a misbalance in the opposing actions of osteoblasts and osteoclasts that are responsible for maintaining the integrity of bone tissues. Here, we show through detailed functional and single-cell genomic studies that intrinsic aging of bona fide mouse skeletal stem cells (SSCs) alters bone marrow niche signaling and skews bone and blood lineage differentiation leading to fragile bones that regenerate poorly. Aged SSCs have diminished bone and cartilage forming potential but produce higher frequencies of stromal lineages that express high levels of pro-inflammatory and pro-resorptive cytokines. Single-cell transcriptomic studies reveal a distinct population of SSCs in aged mice that gradually outcompete their younger counterparts in the bone marrow niche. While systemic exposure to a youthful circulation through heterochronic parabiosis reduced local expression of inflammatory cytokines, it did not reverse the diminished osteochondrogenic activity of aged SSCs and was insufficient to improve bone mass and skeletal-healing parameters in aged mice. Hematopoietic reconstitution of aged mice with young hematopoietic stem cells (HSC) also did not improve bone integrity and repair. We find that deficient bone regeneration in aged mice could only be reversed by the local application of a combinatorial treatment that re-activates aged SSCs and simultaneously abates crosstalk to hematopoietic cells favoring an inflammatory milieu. This treatment expanded aged SSC pools, reduced osteoclast activity, and enhanced bone healing to youthful levels. Our findings provide mechanistic insight into the complex, multifactorial mechanisms underlying skeletal aging and offer new prospects for rejuvenating the aged skeletal system.
Project description:Genome-wide comparative gene expression analysis of callus tissue of osteoporotic mice (Col1a1-Krm2 and Lrp5-/-) and wild-type were performed to identify candidate genes that might be responsible for the impaired fracture healing observed in Col1a1-Krm2 and Lrp5-/- mice. To investigate bone healing in osteoporosis, we performed fracture healing studies in wild-type mice (C57BL/6 genetic background) and the low bone mass strains Col1a1-Krm2 and Lrp5-/- (Schulze et al., 2010; Kato et al., 2002). Osteotomy was set in femora of female mice and stabilized by a semi-rigid fixator to allow fast bone healing (RM-CM-6ntgen et al., 2010). 21 days post surgery we analyzed the fracture calli by biochemical/histological methods, as well as micro-computed tomography, and observed impaired fracture healing in Col1a1-Krm2 and Lrp5-/- mice in comparison to wild-type. To identify genes that may be responsible for the impaired healing in osteoporotic mice, we performed microarray analysis of three independent callus samples of each genotype. The callus tissue was taken 10 days after surgery, because extensive bone formation took place at this point.
Project description:Study of rat femur fracture healing in young (6 weeks old), adult (26 weeks old), and older (52 weeks old) rats with samples collected at 0 time (no fracture) and at 0.4, 1, 2, 4, and 6 weeks after fracture. RNA from two rats were pooled for each array. Keywords = rat, femur, fracture, age, time Keywords: time-course
Project description:The association between DM and impaired fracture healing including delayed union and nonunion has been documented in clinical and experimental settings. We examine mRNA expression specific for impaired fracture healing in diabetic rat.
Project description:The association between DM and impaired fracture healing including delayed union and nonunion has been documented in clinical and experimental settings. We examine miRNA expression specific for impaired fracture healing in diabetic rat.
Project description:mRNA gene expression was measured in intact female Sprague-Dawley rats at 6 (young), 26 (adult) and 52 (older) weeks of age at the time of fracture. Samples were collected at 0, 0.4, 1, 2, 4, and 6 weeks after fracture. RNA from two rats were pooled for each Affymetrix Rat U34A array. Mid-shaft, simple, transverse left femoral fractures were induced after retrograde intramedullary rod fixation with a Bonnarens and Einhorn device. Samples were collected from one third of the femoral length, centered on the fracture site, including the external callus, cortical bone, and marrow elements. Keywords = rat Keywords = fracture Keywords = age Keywords = time Keywords = femur Keywords: other
Project description:Bone fractures, the most common musculoskeletal injuries, heal through three main phases: inflammatory, repair, and remodeling. Around 10% of fracture patients suffer from impaired healing that requires surgical intervention, a huge burden on the healthcare system. The rate of impaired healing increases with metabolic diseases such as obesity-associated hyperglycemia/type 2 diabetes (T2D), an increasing concern given the growing incidence of obesity/T2D. Immune cells play pivotal roles in fracture healing, and obesity/T2D is associated with defective immune-cell functions. However, there is a gap in knowledge regarding the stoichiometry of immune cells that populate the callus and how that population changes during different phases of healing. Here, we used complementary global and single-cell techniques to characterize the repertoire of immune cells in the fracture callus and to identify populations specifically enriched in the fracture callus relative to the unfractured bone or bone marrow. Our analyses identified two clear waves of immune-cell infiltration into the callus: the first wave occurs during the early inflammatory phase of fracture healing, while the second takes place during the late repair/early remodeling phase. Innate immune cells were activated during the early inflammatory phase, but in later phases they returned to homeostatic numbers and activation levels. Of the innate immune cells, distinct subsets of activated dendritic cells were particularly enriched in the inflammatory healing hematoma. In contrast to innate cells, lymphocytes, including B and T cells, were enriched and activated in the callus primarily during the late repair phase. The Diet-Induced Obesity (DIO) mouse, an established model of obesity-associated hyperglycemia and insulin resistance, suffers from multiple healing defects. Our data demonstrate that DIO mice exhibit dysregulated innate immune responses during the inflammatory phase, and defects in all lymphocyte compartments during the late repair phase. Taken together, our data characterize, for the first time, immune populations that are enriched/activated in the callus during two distinct phases of fracture healing and identify defects in the healing-associated immune response in DIO mice, which will facilitate future development of immunomodulatory therapeutics for impaired fracture healing.
Project description:Genome-wide comparative gene expression analysis of callus tissue of osteoporotic mice (Col1a1-Krm2 and Lrp5-/-) and wild-type were performed to identify candidate genes that might be responsible for the impaired fracture healing observed in Col1a1-Krm2 and Lrp5-/- mice.
Project description:Phosphate is essential for healthy bone growth and plays an essential role in fracture repair. Although phosphate deficiency has been shown to impair fracture healing, the mechanisms involved in impaired healing are unknown. More recently, studies have shown that the effect of phosphate deficiency on the repair process varied based on the genetic strain of mice, which is not characterized. We used data from microarrays to (1) determine the effects of phosphate restriction on the biologic functions identified from the gene expression in fracture calluses; and (2) examine whether there are genetic differences within the primary biologic functions.
Project description:The specific genes that distinguish normal fracture healing from abnormal healing or nonunion in humans are unknown. This study was an exploratory investigation of peripheral blood from 2 acutely injured fracture patients collected over multiple days compared to age and sex matched healthy volunteers. We used microarrays to do a global comparison between acutely injured (AI) subjects (AIS) vs age and sex matched healthy volunteers (HV).