Project description:GRSF1 is a mitochondrial RNA-binding protein important for maintaining mitochondrial function. We found that GRSF1 is highly expressed in cultured skeletal myoblasts differentiating into myotubes. To understand the physiological function of GRSF1 in vivo, we generated mice in which GRSF1 was specifically ablated in skeletal muscle. The conditional knockout mice (Grsf1cKO) appeared normal until 7-9 months of age. Importantly, however, a reduction of muscle endurance compared to wild-type controls was observed in 16- to18-month old Grsf1cKO mice. Transcriptomic analysis revealed more than 200 mRNAs differentially expressed in Grsf1cKO muscle at this age. Notably, mRNAs encoding proteins involved in mitochondrial function, inflammatory reaction, and ion transport, including Mgarp, Cxcl10, Nfkb2, and Sln, were significantly elevated in aged Grsf1cKO muscle. Our findings suggest that GRSF1 deficiency exacerbates the functional decline of aged skeletal muscle, likely through multiple downstream genes.
Project description:GRSF1 is a mitochondrial RNA-binding protein important for maintaining mitochondrial function. We found that GRSF1 is highly expressed in cultured skeletal myoblasts differentiating into myotubes. To understand the physiological function of GRSF1 in vivo, we generated mice in which GRSF1 was specifically ablated in skeletal muscle. The conditional knockout mice (Grsf1cKO) appeared normal until 7-9 months of age. Importantly, however, a reduction of muscle endurance compared to wild-type controls was observed in 16- to 18-month old Grsf1cKO mice. Transcriptomic analysis revealed more than 200 mRNAs differentially expressed in Grsf1cKO muscle at this age. Notably, mRNAs encoding proteins involved in mitochondrial function, inflammation, and ion transport, including Mgarp, Cxcl10, Nfkb2, and Sln mRNAs, were significantly elevated in aged Grsf1cKO muscle. Our findings suggest that GRSF1 deficiency exacerbates the functional decline of aged skeletal muscle, likely through multiple downstream effector proteins.
Project description:We examined global mRNA expression using cDNA microarrays in skeletal muscle of humans before, and 3h and 48h after a single bout of exhaustive endurance exercise (cycling). Keywords: Time course Healthy, non-trained university-aged subjects performed a single bout of exhaustive cycling. Skeletal muscle biopsies were taken from the vastus lateralis before, 3h and 48h after the exercise bout. Total RNA was extracted, amplified, reverse transcribed, and cDNA was analyzed on a custom made cDNA microarray. Four subjects were analyzed, and samples were not pooled between subjects (i.e. individual microarrays were used for baseline vs. 3H and baseline vs. 48h for EACH subject; repeated measures design).
Project description:Atherosclerosis development is largely driven by old age and lifestyle factors, such as diet, physical activity and smoking. Microarray analysis of skeletal muscle gene expression was performed on young (14 weeks) and aged (49-52 weeks) C57BL/6 wild-type (WT) and atherosclerosis-prone ApoE-/- mice, which were subjected to physical endurance exercise on a treadmill for 5 weeks, with or without a high fat diet.
Project description:Endurance-trained athletes have high oxidative capacity, enhanced insulin sensitivity, and high intracellular lipid accumulation in muscle. These characteristics are likely due to altered gene expression levels in muscle. We used microarrays to detect gene expression profile in endurance-trained athlete skeletal muscle.
Project description:This SuperSeries is composed of the following subset Series: GSE18583: Baseline skeletal muscle gene expression GSE35659: A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype (resting muscle after endurance training) Refer to individual Series
Project description:We examined global mRNA expression using cDNA microarrays in skeletal muscle of humans before, and 3h and 48h after a single bout of exhaustive endurance exercise (cycling). Keywords: Time course
Project description:Background and Aims: Inflammasome-mediated caspase-1 activity regulates the maturation and release of the pro-inflammatory cytokines interleukin (IL)-1M-CM-^_ and IL-18. Recently, we showed that caspase-1 deficiency strongly reduces high fat diet-induced adiposity although the mechanism is still unclear. We now aimed to elucidate the mechanism by which caspase-1 deficiency reduces modulates resistance to high fat diet-feeding fat accumulation in adipose tissue by focusing on the role of caspase-1 in the regulation of triglyceride (TG)-rich lipoprotein metabolism. Methods: Caspase-1 deficient and wild-type mice (both C57Bl/6 background) were used to determine postprandial TG kinetics, intestinal TG absorption, VLDL-TG production as well as TG clearance, all of which strongly contribute to the supply of TG for storage in adipose tissue. Micro-array and qPCR analysis were used to unravel intestinal and hepatic metabolic pathways involved. Results: Caspase-1 deficiency reduced the postprandial response to an oral lipid load, while tissue specific clearance of TG-rich lipoproteins was not changed. Indeed, an oral olive oil gavage containing [3H]TG revealed that caspase-1 deficiency significantly decreased intestinal chylomicron-TG production and reduced the uptake of [3H]TG-derived FA by liver, muscle, and adipose tissue. Similarly, caspase-1 deficiency reduced the hepatic VLDL-TG production without reducing VLDL-apoB production, despite an elevated hepatic TG content. Pathway analysis revealed that caspase-1 deficiency reduces intestinal and hepatic expression of genes involved in lipogenesis. Conclusions: Absence of caspase-1 reduces assembly and secretion of TG-rich lipoproteins, thereby reducing the availability of TG-derived FA for uptake by peripheral organs including adipose tissue. We anticipate that caspase-1 represents a novel link between innate immunity and lipid metabolism. Keywords: Expression profiling by array Wild-type (WT) and Casp1-null mice were maintained at lab chow. Animals, aged between 14 and 16 weeks (n=3 per genotype), were killed and liver and intestinal segments were removed. Livers were isolated from mice that were fasted over night, whereas intesines were removed from mice 2 hrs after they received an oral lipid load.Total RNA was isolated and subjected to gene expression profiling.
Project description:The molecular pathways which are activated and contribute to physiological remodeling of skeletal muscle in response to endurance exercise have not been fully characterized. We previously reported that ~800 gene transcripts are regulated following 6 weeks of supervised endurance training in young sedentary males, referred to as the training responsive transcriptome (TRT). Here we utilized this database together with data on biological variation in muscle adaptation to aerobic endurance training in both humans and a novel out-bred rodent model to study the potential regulatory molecules that coordinate this complex network of genes. We identified three DNA sequences representing RUNX1, SOX9, and PAX3 transcription factor binding sites as over-represented in the TRT. In turn, miRNA profiling indicated that several miRNAs targeting RUNX1, SOX9 and PAX3 were down-regulated by endurance training. The TRT was then examined by contrasting subjects who demonstrated the least vs. the greatest improvement in aerobic capacity (low vs. high responders), and at least 100 of the 800 TRT genes were differentially regulated, thus suggesting regulation of these genes may be important for improving aerobic capacity. In high responders, pro-angiogenic and tissue developmental networks emerged as key candidates for coordinating tissue aerobic adaptation. Beyond RNA level validation there were several DNA variants that associated with VO(2)max trainability in the HERITAGE Family Study but these did not pass conservative Bonferroni adjustment. In addition, in a rat model selected across 10 generations for high aerobic training responsiveness, we found that both the TRT and a homologous subset of the human high responder genes were regulated to a greater degree in high responder rodent skeletal muscle. This analysis provides a comprehensive map of the transcriptomic features important for aerobic exercise-induced improvements in maximal oxygen consumption. This data is from skeletal muscle post 6 weeks of endurance exercise training.
Project description:The participants performed 8 weeks of superised aerobic endurance exercise. Skeletal muscle biopsise were taken at rest before and after intervention and matched analysis was performed.