Project description:Rapid dissemination of SARS-CoV-2 sequencing data to public repositories has enabled widespread study of viral genomes, but studies of longitudinal specimens from infected persons are relatively limited. Analysis of longitudinal specimens enables understanding of how host immune pressures drive viral evolution in vivo. Here we performed sequencing of 49 longitudinal SARS-CoV-2-positive samples from 20 patients in Washington State collected between March and September of 2020. Viral loads declined over time with an average increase in RT-PCR cycle threshold (Ct) of 0.87 per day. We found that there was negligible change in SARS-CoV-2 consensus sequences over time, but identified a number of nonsynonymous variants at low frequencies across the genome. We observed enrichment for a relatively small number of these variants, all of which are now seen in consensus genomes across the globe at low prevalence. In one patient, we saw rapid emergence of various low-level deletion variants at the N-terminal domain of the spike glycoprotein, some of which have previously been shown to be associated with reduced neutralization potency from sera. In a subset of samples that were sequenced using metagenomic methods, differential gene expression analysis showed a downregulation of cytoskeletal genes that was consistent with a loss of ciliated epithelium during infection and recovery. We also identified co-occurrence of bacterial species in samples from multiple hospitalized individuals. These results demonstrate that the intrahost genetic composition of SARS-CoV-2 is dynamic during the course of COVID-19, and highlight the need for continued surveillance and deep sequencing of minor variants.
Project description:To explore the relationship between SARS-CoV-2 infection in different time before operation and postoperative main complications (mortality, main pulmonary and cardiovascular complications) 30 days after operation; To determine the best timing of surgery after SARS-CoV-2 infection.
Project description:HAE cultures were infected with SARS-CoV, SARS-dORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV, SARS-dORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate for RNA Triplicates are defined as 3 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2 for SARS viruses and an MOI of 1 for H1N1.
Project description:HAE cultures were infected with SARS-CoV, SARS-dORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV, SARS-dORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate or quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.
Project description:HAE cultures were infected with SARS-CoV, SARS-ddORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV. Time Points = 0, 24, 48, 60, 72, 84 and 96 hrs post-infection forSARS-ddORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate/quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.
Project description:Healthcare workers were recruited at St Bartholomew’s Hospital, London, UK in the week of lockdown in the United Kingdom (between 23rd and 31st March 2020). Participants underwent weekly evaluation using a questionnaire and biological sample collection (including serological assays) for up to 16 weeks when attending for work and self-declared as fit to attend work at each visit, with further follow up samples collected at 24 weeks. Blood RNA sequencing data was to be used to identify host-response biomarkers of early SARS-CoV-2 infection, to evaluate existing blood transcriptomic signatures of viral infection, and to describe the underlying biology during SARS-CoV-2 infection. This submission includes a total of 172 blood RNA samples from 99 participants. Of these, 114 samples (including 16 convalescent samples collected 6 months after infection) were obtained from 41 SARS-CoV-2 cases, with the remaining 58 from uninfected controls. Participants with available blood RNA samples who had PCR-confirmed SARS-CoV-2 infection during follow-up were included as ‘cases’. Those without evidence of SARS-CoV-2 infection on nasopharyngeal swabs and who remained seronegative by both Euroimmun anti S1 spike protein and Roche anti nucleocapsid protein throughout follow-up were included as uninfected controls. ‘Cases’ include all available RNA samples, including convalescent samples at week 24 of follow-up for a subset of participants. For uninfected controls, we included baseline samples only. Sample class denotes weekly interval to positive SARS-CoV-2 PCR; non-infected controls (NIC); convalescent samples (Conv)_.
Project description:Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiologic agent of the coronavirus disease 2019 (COVID-19) pandemic. We conducted a longitudinal study to investigate gene expression patterns during the acute SARS-CoV-2 illness. The cases included SARS-CoV-2 infected individuals with an extremely high viral load early in their illness matched to individuals who either had a low SARS-CoV-2 viral load early in their infection or were otherwise stable patients who tested negative for SARS-CoV-2 prior to their outpatient surgical or aerosol generating procedure. We detected hundreds of up-regulated genes that were highly correlated to the SARS-CoV-2 viral load. Many of these up-regulated genes were enriched in cellular pathways involved in the innate immune response, antiviral interferon and cytokine signaling, and cell death.
Project description:Controlled human infection experiments enable longitudinal profiling of immune responses to a pathogen. 36 healthy volunteers aged 18-29 years, with no evidence of previous infection or vaccination, were inoculated with SARS-CoV-2 virus and quarantined for 14 days. Blood samples for RNA sequencing were collected into PAXgene tubes before virus challenge, 6 hours after challenge, daily thereafter for 14 days and on day 28. Mid-turbinate nose swabs for RNA sequencing were collected before virus challenge, and on days 1, 3, 5, 7, 10 and 14 after challenge, preserved in RNAprotect. 18 of 36 participants developed a replicative SARS-CoV-2 infection as evidenced by consecutive PCR-positive swabs for the virus. For every participant, blood RNA from selected days were extracted and depleted for genomic DNA and globin mRNA, before cDNA libraries were constructed using KAPA RNA HyperPrep with RiboErase kits. Libraries were sequenced on the Illumina NovaSeq 6000 platform using NovaSeq 6000 S4 Reagent Kits (200 cycles). Nose swab RNA samples were extracted and depleted for genomic DNA before cDNA libraries were constructed using KAPA mRNA HyperPrep Kits. Libraries were sequenced on the Illumina NextSeq platform the using the NextSeq 500/550 High Output Kit (75 cycles).
Project description:Viral pandemics pose an imminent threat to humanity. The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus, requires the urgent development of anti-viral therapies. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here, we offer an in-depth analysis of the host response to SARS-CoV-2 as it compares to other respiratory infections. Cell and animal models of SARS-CoV-2 infections, in addition to transcriptional profiling of a COVID-19 lung biopsy consistently revealed a unique and inappropriate inflammatory response defined by elevated chemokine expression in the absence of Type I and III interferons. Our identification of a muted transcriptional response to SARS-CoV-2 supports a model in which initial failure to rapidly respond to infection results in prolonged viral replication and an influx of proinflammatory cells that induce alveolar damage and manifest in COVID-19 lung pathology.
Project description:SARS-CoV-2 infection in human can cause medical complications across various tissues and organs. Despite of the advances to understanding the pathogenesis of SARS-CoV-2, its tissue tropism and interactions with host cells have not been fully understood. Existing clinical data have suggested possible SARS-CoV-2 infection in human skeleton system. In the present study, we exmined the effects of authentic SARS-CoV-2 on bone marrow-derived macrophages (BMMs).