Project description:Detecting strain-specific barcodes with mass spectrometry can facilitate the screening of genetically engineered bacterial libraries. Here, we introduce intact protein barcoding, a method to measure protein-based library barcodes and metabolites using flow-injection mass spectrometry (FI-MS). Protein barcodes are based on ubiquitin with N-terminal tags of six amino acids. We demonstrate that FI-MS detects intact ubiquitin proteins and identifies the mass of N-terminal barcodes. In the same analysis, we measured relative concentrations of primary metabolites. We constructed 6 ubiquitin-barcoded CRISPRi strains targeting metabolic enzymes, and analyzed their metabolic profiles and ubiquitin barcodes. FI-MS detected barcodes and distinct metabolome changes in CRISPRi-targeted pathways. We demonstrate the scalability of intact protein barcoding by measuring 132 ubiquitin barcodes in microtiter plates. These results show that intact protein barcoding enables fast and simultaneous detection of library barcodes and intracellular metabolites, opening up new possibilities for mass spectrometry-based barcoding.
Project description:High-throughput single-cell assays increasingly require special consideration in experimental design, sample multiplexing, batch effect removal, and data interpretation. Here, we describe a lentiviral barcode-based multiplexing approach, CellTag Indexing, which uses predefined genetic barcodes that are also heritable, enabling cell populations to be tagged, pooled, and tracked over time in the same experimental replicate. We demonstrate the utility of CellTag Indexing by sequencing transcriptomes using a variety of cell types, including long-term tracking of cell engraftment and differentiation in vivo. Together, this presents CellTag Indexing as a broadly applicable genetic multiplexing tool that is complementary with existing single-cell technologies.
Project description:LNPs have been demonstrated to hold great promise for the clinical advancement of RNA therapeutics. Continued exploration of LNPs for application in new disease areas requires identification and optimisation of leads in a high throughput way. Currently available high throughput in vivo screening platforms are well suited to screen for cellular uptake but less so for functional cargo delivery. We report on a platform which measures functional delivery of LNPs using unique peptide ‘barcodes’. We describe the design and selection of the peptide barcodes and the evaluation of these for the screening of LNPs. We show that proteomic analysis of peptide barcodes correlates with quantification and efficacy of barcoded reporter proteins both in vitro and in vivo and, that the ranking of selected LNPs using peptide barcodes in a pool correlates with ranking using alternative methods in groups of animals treated with individual LNPs. We show that this system is sensitive, selective, and capable of reducing the size of an in vivo study by screening up to 10 unique formulations in a single pool, thus accelerating the discovery of new technologies for mRNA delivery.
2024-10-17 | PXD053797 | Pride
Project description:Plant DNA Barcodes from the Biological Diversity of the Guiana Shield Program.
Project description:Flavonoids are biological compounds with high potency to modulate molecular processes. The study was designed to estimate genistein, kaempferoland their mixture impact on global gene expression, with special focus on key processes in MPS pathogenesis. We used microarrays to detail the global program of gene expression underlying flavonoid treatment and identified distinct classes of regulated genes during this process.
Project description:Spatial transcriptomics technologies that can quantify gene expression in space are transforming contemporary biology research. Some of such methods use spatially barcoded bead arrays that are optically sequenced by a microscopy setup to detect bead barcodes in space which can be consecutively matched to cell barcodes from the respective single cell sequencing experiment. To have good quality barcodes and a high number of barcode matches in space, robust and efficient computational pipelines are needed to process raw microscopy images and call the bases of bead barcodes accurately. Here, we present Optocoder, a computational pipeline that takes raw optical sequencing microscopy images as input and outputs bead barcodes in space. Optocoder efficiently aligns images, detects beads, and corrects for confounding factors of the fluorescence signal such as crosstalk and phasing before base calling. Furthermore, we implement a machine learning pipeline that is trained using the signal from the beads that match to illumina barcodes in order to predict non-matching bead barcodes which can boost up the number of barcode matches. We benchmark Optocoder using data from an in-house spatial transcriptomics platform as well as data from the Slide-seq method and we show that it can efficiently process both datasets with minimal modification.
Project description:Variants of the essential genes in budding yeast S. cerevisae were cloned into a variomics library, and tested for their ability to confer resistance to three different drugs. Genes were tagged with molecular barcodes, and the relative change in abundance of the molecular barcodes are detected using a spotted Agilent synthesized microarray.
Project description:20 random DNA barcodes were designed in silico and transfected into PC3 cells. Barcodes were sequenced using Illumina-Miseq technology to find the sequence and their respective copy numbers. Current file contains the raw data of these DNA barcodes in fastq format Validating an algorithm called SRiD that generates random DNA barcodes that do not match a genome of interest, in this case human genome. 20 DNA barcodes were used for this validation.
Project description:20 random DNA barcodes were designed in silico and transfected into PC3 cells. Barcodes were sequenced using Illumina-Miseq technology to find the sequence and their respective copy numbers. Current file contains the raw data of these DNA barcodes in fastq format