Project description:Photoautotrophically grown wild type Chlamydomonas reinhardtii cultures were either "treated" with 2uM rose bengal at 50 umol photons m-2 s-1 or "untreated" with the same volume of water at the same light intensity. The purpose is to identify genes that are regulated by singlet oxygen. Keywords: stress response
Project description:RAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT-PCR and Western Blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype. RAS-ROSE cells and ROSE cells treated with Scrambled siRNA
Project description:Roses, which have been cultivated for at least 5000 years, are one of the most important ornamental crops in the world. Because of the interspecific nature and high heterozygosity in commercial roses, the genetic resources available for rose are limited. To effectively identify markers associated with QTL controlling important traits, such as disease resistance, abundant markers along the genome and careful phenotyping are required. Utilizing genotyping by sequencing technology and the strawberry genome (Fragaria vesca v2.0.a1) as a reference, we generated thousands of informative single nucleotide polymorphism (SNP) markers. These SNPs along with known bridge simple sequence repeat (SSR) markers allowed us to create the first high-density integrated consensus map for diploid roses. Individual maps were first created for populations J06-20-14-3×"Little Chief" (J14-3×LC), J06-20-14-3×"Vineyard Song" (J14-3×VS) and "Old Blush"×"Red Fairy" (OB×RF) and these maps were linked with 824 SNPs and 13 SSR bridge markers. The anchor SSR markers were used to determine the numbering of the rose linkage groups. The diploid consensus map has seven linkage groups (LGs), a total length of 892.2 cM, and an average distance of 0.25 cM between 3527 markers. By combining three individual populations, the marker density and the reliability of the marker order in the consensus map was improved over a single population map. Extensive synteny between the strawberry and diploid rose genomes was observed. This consensus map will serve as the tool for the discovery of marker-trait associations in rose breeding using pedigree-based analysis. The high level of conservation observed between the strawberry and rose genomes will help further comparative studies within the Rosaceae family and may aid in the identification of candidate genes within QTL regions.
Project description:Rose (Rosa hybrida L.) is a major cut flowers in the world. Studying the molecular mechanism of auxin regulation in growth is of great significance for enhancing the understanding of the growth and development processes of rose and informing accurate exogenous auxin application in rose production. However, the response mechanism of rose to miRNA-mediated auxin signal transduction is unclear. In this study, rose plants were treated with IAA, and 75 known miRNAs and 168 novel miRNAs were identified by small RNA sequencing. Among them, 19 known miRNAs and 42 miRNAs were differentially expressed. Many differential miRNAs demonstrated staged responses to auxin treatment. The targeted relationship between miRNA and key transcription factors regulated by auxin in rose was analyzed, and the target genes in the ARF family and AUX/IAA family were screened. By using quantitative real-time PCR(qRT-PCR) to verify the expression patterns of the miRNA regulating the auxin signal transduction pathway and its target gene, we found that miR156a, miR160a, miR164a, miR167d, miR396b-3p, novel_miR_189, novel_miR_74, novel_miR_8, and novel_miR_207 interacted negatively with the ARF family, and miR390a-3p and novel_miR_101 interacted negatively with the AUX/IAA family. These results provide a theoretical basis for further studies on the auxin regulatory mechanisms in rose.
Project description:affy_floralangers_rose - affy_floral_rose - - Which genes are induced during floral initiation? - Are the genes involved in floral initiation identical between our 3 genotypes? - Which genes are involved in the control of recurrent blooming in rose? - Which genes are diferentially expressed between buds that will become floral and buds that will remain vegetative?-This project aims to find in rose genes involved in flowering control (floral initiation and recurrent flowering). First, the floral initiation will be observed in 3 genotypes. Then we will check if same genes are regulated within genotypes for this process. Concerning recurrent blooming, we will compare flower bud versus vegetative buds in non-recurrent conditions and finally bud from non-recurrent and recurrent genotypes. Keywords: time course 26 arrays - rose