Project description:Total S phase was measured for wild-type cells undergoing meiS and mitS. Early replication origins were mapped in mitS in wild-type cells, and in meiS for wild-type, sml1 delete, rec8 delete and spo11 delete cells.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Persea americana tissues (including leaves, flowers and fruit). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study.
Project description:The debate on the origin and evolution of flowers has recently entered the field of developmental genetics, with focus on the design of the ancestral floral regulatory program. Flowers can differ dramatically among angiosperm lineages, but in general, sterile perianth organs surrounding stamens (male reproductive organs) and carpels (female reproductive organs) constitute the basic floral structure. However, the basal angiosperm lineages exhibit spectacular diversity in the number, arrangement, and structure, of floral organs, while the evolutionarily derived monocot and eudicot lineages share a far more uniform floral ground plan. As such, regulatory mechanisms underlying the archetypal floral plan, for instance that of the eudicot genetic model Arabidopsis thaliana, are unlikely to apply to the original flowers. Here we show that broadly overlapping transcriptional programs characterise the floral transcriptome of the basal angiosperm Persea americana (avocado), while floral gene expression domains are typically organ-specific in Arabidopsis. Our findings extend the “fading borders” model for basal angiosperms from organ identity genes to the downstream floral transcriptome, and suggest that the combinatorial mechanism for organ identity may not operate in basal angiosperms as it does in Arabidopsis. Furthermore, fading expression of components of the stamen transcriptome in central and peripheral regions of Persea flowers resembles the developmental program of the hypothesized gymnosperm “floral progenitor”. Accordingly, in contrast to the canalized organ-specific regulatory apparatus of Arabidopsis, floral development may have been originally regulated by overlapping transcriptional cascades with fading gradients of influence from focal to bordering organs.
Project description:In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.
Project description:Sex chromosomes are generally morphologically and functionally distinct, but the evolutionary forces that cause this differentiation are poorly understood. Drosophila americana americana was used in this study to examine one aspect of sex chromosome evolution, the degeneration of nonrecombining Y chromosomes. The primary X chromosome of D. a. americana is fused with a chromosomal element that was ancestrally an autosome, causing this homologous chromosomal pair to segregate with the sex chromosomes. Sequence variation at the Alcohol Dehydrogenase (Adh) gene was used to determine the pattern of nucleotide variation on the neo-sex chromosomes in natural populations. Sequences of Adh were obtained for neo-X and neo-Y chromosomes of D. a. americana, and for Adh of D. a. texana, in which it is autosomal. No significant sequence differentiation is present between the neo-X and neo-Y chromosomes of D. a. americana or the autosomes of D. a. texana. There is a significantly lower level of sequence diversity on the neo-Y chromosome relative to the neo-X in D. a. americana. This reduction in variability on the neo-Y does not appear to have resulted from a selective sweep. Coalescent simulations of the evolutionary transition of an autosome into a Y chromosome indicate there may be a low level of recombination between the neo-X and neo-Y alleles of Adh and that the effective population size of this chromosome may have been reduced below the expected value of 25% of the autosomal effective size, possibly because of the effects of background selection or sexual selection.