Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.
Project description:A cDNA library was constructed by Novogene (CA, USA) using a Small RNA Sample Pre Kit, and Illumina sequencing was conducted according to company workflow, using 20 million reads. Raw data were filtered for quality as determined by reads with a quality score > 5, reads containing N < 10%, no 5' primer contaminants, and reads with a 3' primer and insert tag. The 3' primer sequence was trimmed and reads with a poly A/T/G/C were removed
Project description:Circadian behaviors are regulated by intrinsic biological clocks consisting of central molecular oscillators and output pathways. Despite significant progress in elucidating the central timekeeping mechanisms, the molecular pathways coupling the circadian pacemaker to overt rhythmic behavior and physiology remain elusive. The Drosophila LARK RNA-binding protein is a candidate for such a coupling factor. Previous research indicates that LARK functions downstream of the clock to mediate behavioral outputs. To better understand the roles of LARK in the Drosophila circadian system, we sought to identify RNA molecules associated with LARK in vivo, using a novel strategy that involves capturing the RNA ligands by immunoprecipitation, visualizing the captured RNAs using whole gene microarrays, and identifying functionally relevant targets through genetic screens. Experiment Overall Design: LARK-containing ribonucleoprotein complexes (LARK-RNPs) were precipitated from lysates of hand-dissected pharate adult brains using an affinity-purified anti-LARK antibody (around 1000 brains were used per immunoprecipitation experiment). A portion of each lysate was saved prior to immunoprecipitations (IPs) in order to measure the relative abundance of transcripts in a total RNA sample. RNAs extracted from the LARK-RNP and total RNA samples were labeled and hybridized to Drosophila whole-genome gene microarrays; signal intensities for individual genes were compared between samples to identify those RNAs that were enriched by immunoprecipitation (relative to their abundances in total RNA). RNAs that were selectively enriched in the LARK-RNP samples were considered to be potential targets of the RNA-binding protein. Experiment Overall Design: Due to the difficulty to dissect large amount of fly brains, only two such immunoprecipitation experiments were performed, each generating an IP RNA sample and a total RNA (control) sample. The amount of RNAs obtained from IP is very small thus only one array is used for each sample - i.e. there are only biological replicates and no technical replicate.
Project description:Whole exome sequencing of 5 HCLc tumor-germline pairs. Genomic DNA from HCLc tumor cells and T-cells for germline was used. Whole exome enrichment was performed with either Agilent SureSelect (50Mb, samples S3G/T, S5G/T, S9G/T) or Roche Nimblegen (44.1Mb, samples S4G/T and S6G/T). The resulting exome libraries were sequenced on the Illumina HiSeq platform with paired-end 100bp reads to an average depth of 120-134x. Bam files were generated using NovoalignMPI (v3.0) to align the raw fastq files to the reference genome sequence (hg19) and picard tools (v1.34) to flag duplicate reads (optical or pcr), unmapped reads, reads mapping to more than one location, and reads failing vendor QC.
Project description:Circadian behaviors are regulated by intrinsic biological clocks consisting of central molecular oscillators and output pathways. Despite significant progress in elucidating the central timekeeping mechanisms, the molecular pathways coupling the circadian pacemaker to overt rhythmic behavior and physiology remain elusive. The Drosophila LARK RNA-binding protein is a candidate for such a coupling factor. Previous research indicates that LARK functions downstream of the clock to mediate behavioral outputs. To better understand the roles of LARK in the Drosophila circadian system, we sought to identify RNA molecules associated with LARK in vivo, using a novel strategy that involves capturing the RNA ligands by immunoprecipitation, visualizing the captured RNAs using whole gene microarrays, and identifying functionally relevant targets through genetic screens. Keywords: Association with RNA-binding protein
Project description:The goal of this study is to identify, in the head of adult flies, mRNA species whose expresson level are altered by overexpression of the Drosophila RNA-binding protein LARK in CNS neurons. Experiment Overall Design: RNA samples from adult head of the LARK overexpression flies (elav-gal4; uas-lark/+) and control flies were compared. One total RNA sample was isolated from each genotype, of which three technical replicates (repeating the labeling and hybridization processes) were generated, respectively.
Project description:We use nucleosome maps obtained by high-throughput sequencing to study sequence specificity of intrinsic histone-DNA interactions. In contrast with previous approaches, we employ an analogy between a classical one-dimensional fluid of finite-size particles in an arbitrary external potential and arrays of DNA-bound histone octamers. We derive an analytical solution to infer free energies of nucleosome formation directly from nucleosome occupancies measured in high-throughput experiments. The sequence-specific part of free energies is then captured by fitting them to a sum of energies assigned to individual nucleotide motifs. We have developed hierarchical models of increasing complexity and spatial resolution, establishing that nucleosome occupancies can be explained by systematic differences in mono- and dinucleotide content between nucleosomal and linker DNA sequences, with periodic dinucleotide distributions and longer sequence motifs playing a secondary role. Furthermore, similar sequence signatures are exhibited by control experiments in which genomic DNA is either sonicated or digested with micrococcal nuclease in the absence of nucleosomes, making it possible that current predictions based on highthroughput nucleosome positioning maps are biased by experimental artifacts. Included are raw (eland) and mapped (wig) reads. The mapped reads are provided in eland and wiggle formats, and the raw reads are included in the eland file. This series includes only Mnase control data. The sonicated control is part of this already published accession, as is a in vitro nucleosome map: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15188 We also studied data (in vitro and in vivo maps as well as a model) from http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13622 and from: http://www.ncbi.nlm.nih.gov/sra/?term=SRA001023