Project description:SARS-CoV-2 virus is known to infect the oral cavity and can be readily detected using PCR-based testing. In this study, we examined the host transcriptomic response to PCR-confirmed SARS-CoV-2 virus infection, vaccination against SARS-CoV-2, or breakthrough infection following vaccination using RNA-sequencing. The identification of the viral variant for all samples was obtained using full viral genome sequencing. Approximately equal numbers of males and females were used for every major variant lineage. Results indicate strong anti-viral responses in each case, with some differences due to variant strain and vaccination history, as well as age and sex.
Project description:This experiment aims to profile polyclonal antibody binding profiles in serum from vaccinated animals relative to antibody function in a virus neutralization assay. Rabbits received three vaccinations with a DNA vaccine encoding the spike protein of the SARS-CoV-2 index strain. Serum samples were selected based on a three-tier (low, intermediate, and high) capacity to cross-neutralize SARS-CoV-2 strains with known neutralization resistance. Following normalization of total anti-spike IgG levels, serum of each animal (n=3) were evaluated for antibody binding to 10mer cyclic constrained peptides spanning the entire spike protein and regions with known SARS-CoV-2 variant of concern spike mutations.
Project description:The experiment aims at characterizing the immune responses elicited by the BNT162b2 vaccine against SARS-CoV-2, initially administered in a two dose regimen (second dose after three weeks followinf the first dose) In particular the transcriptional landscape of circulating T and B lymphocytes has been profiled longitudinnaly by scRNA-seq coupleD with CITE-seq of 19 cell surface markers to better classify T cells subpopulations, LIBRA-seq to assess the Spike-specificity of BCRs and and V(D)J seq to also track T and B cell clones dynamics. Eeach sample was profiled before vaccination (T0), 21 days after the first dose (T1), 2 months after the first dose (1 month after the second dose) (T2). The immune responses were characterized using PBMC from 3 SARS-CoV-2 experienced donors (experiencing SARS-Cov-2 at least 4 months before the first vaccinatin) and 2 SARS-CoV-2 unexperienced donors.
Project description:The SARS-CoV-2 virus is continuously evolving, with appearance of new variants characterized by multiple genomic mutations, some of which can affect functional properties, including infectivity, interactions with host immunity, and disease severity. The rapid spread of new SARS-CoV-2 variants has highlighted the urgency to trace the virus evolution, to help limit its diffusion, and to assess effectiveness of containment strategies. We propose here a PCR-based rapid, sensitive and low-cost allelic discrimination assay panel for the identification of SARS-CoV-2 genotypes, useful for detection in different sample types, such as nasopharyngeal swabs and wastewater. The tests carried out demonstrate that this in-house assay, whose results were confirmed by SARS-CoV-2 whole-genome sequencing, can detect variations in up to 10 viral genome positions at once and is specific and highly sensitive for identification of all tested SARS-CoV-2 clades, even in the case of samples very diluted and of poor quality, particularly difficult to analyze.
Project description:To further investigate the underlying mechanisms of severe acute respiratory syndrome (SARS) pathogenesis and evaluate the therapeutic efficacy of potential drugs and vaccines it is necessary to use an animal model that is highly representative of the human condition in terms of respiratory anatomy, physiology and clinical sequelae. The ferret, Mustela putorius furo, supports SARS-CoV replication and displays many of the symptoms and pathological features seen in SARS-CoV-infected humans. We have recently established a SARS-CoV infection-challenge ferret platform for use in evaluating potential therapeutics to treat SARS. The main objective of the current study was to extend our previous results and identify early host immune responses upon infection and determine immune correlates of protection upon challenge with SARS-CoV in ferrets. Keywords: time course This study is a simple time course (58 day) examination of host responses in 35 SARS-CoV (TOR2) infected ferrets with the addition of a challenge inoculation of SARS CoV (TOR2) at day 29 post infection. Three mock-infected ferrets are included as negative controls. Due to the unavailability of ferret microarrays, Affymetrix Canine 2.0 oligonucleotide arrays were chosen following sequence analysis of our ferret cDNA library (~5000 clones) and demonstration of high levels of homology (>80%) between dog and ferret.
Project description:hACE2 transgenic mice were infected with the original SARS-CoV-2 strain (B.1) and the Beta (B.1.351) variant. Lung and spleen samples were collected 1 day post infection (DPI), 3 DPI and 5 DPI, and mRNA was sequenced.
Project description:A recombinant SARS-CoV lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major virulence determinant in vivo. Elimination of SARS-CoV E protein PBM by using reverse genetics led to attenuated viruses (SARS-CoV-mutPBM) and to a reduction in the deleterious exacerbate immune response triggered during infection with the parental virus (SARS-CoV-wt). Cellular protein syntenin bound E protein PBM during SARS-CoV infection. Syntenin activates p38 MAPK leading to overexpression of inflammatory cytokines, and we have shown that active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM (SARS-CoV-mutPBM) as compared with the parental virus (SARS-CoV-wt), leading to a decreased expression of inflammatory cytokines and to viral attenuation. Therefore, E protein PBM is a virulence factor that activates pathogenic immune response most likely by using syntenin as a mediator of p38 MAPK induced inflammation. Three biological replicates were independently hybridized (one channel per slide) for each sample type (SARS-CoV-wt, SARS-CoV-mutPBM, Mock). Slides were Sure Print G3 Agilent 8x60K Mouse (G4852A-028005)
Project description:Healthcare workers were recruited at St Bartholomew’s Hospital, London, UK in the week of lockdown in the United Kingdom (between 23rd and 31st March 2020). Participants underwent weekly evaluation using a questionnaire and biological sample collection (including serological assays) for up to 16 weeks when attending for work and self-declared as fit to attend work at each visit, with further follow up samples collected at 24 weeks. Blood RNA sequencing data was to be used to identify host-response biomarkers of early SARS-CoV-2 infection, to evaluate existing blood transcriptomic signatures of viral infection, and to describe the underlying biology during SARS-CoV-2 infection. This submission includes a total of 172 blood RNA samples from 99 participants. Of these, 114 samples (including 16 convalescent samples collected 6 months after infection) were obtained from 41 SARS-CoV-2 cases, with the remaining 58 from uninfected controls. Participants with available blood RNA samples who had PCR-confirmed SARS-CoV-2 infection during follow-up were included as ‘cases’. Those without evidence of SARS-CoV-2 infection on nasopharyngeal swabs and who remained seronegative by both Euroimmun anti S1 spike protein and Roche anti nucleocapsid protein throughout follow-up were included as uninfected controls. ‘Cases’ include all available RNA samples, including convalescent samples at week 24 of follow-up for a subset of participants. For uninfected controls, we included baseline samples only. Sample class denotes weekly interval to positive SARS-CoV-2 PCR; non-infected controls (NIC); convalescent samples (Conv)_.