Project description:Our purpose was to investigate genes and molecular mechanisms involved in patients with Leber congenital amaurosis (LCA). Fibroblasts from two unrelated clinically-identified patients (Coriell) were reprogrammed to pluripotency by retroviral transduction. These human induced Pluripotent Stem Cells (hiPSCs) were differentiated into neural stem cells (NSC) that mimicked the neural tube stage and retinal pigmented epithelial (RPE) cells that could be targeted by the disease. A genome wide transcriptome analysis was performed with Affymetrix Exon Array GeneChipM-BM-., comparing LCA-hiPSCs derivatives to controls. The aim was to identify differentially expressed genes which may be associated with early developmental defect before the establishment of mature retinal circuitry. We analyzed iPSC-derived retinal pigmented epithelial (RPE) cells from LCA patient's fibroblast (n=2) and iPSC-derivedretinal pigmented epithelial (RPE) cells from healthy people fibroblast (n=2). A total of 13 samples were analyzed : 9 RPE cells derived from iPSC LCA and 4 RPE cells derived from wild-type iPSC.
Project description:We obtained induced RPE (iRPE) cells from dedifferentiated induced pluripotent stem cells (De-iPSC-RPE). We analyzed their protein profiles by Mass Spectrum
Project description:We show that Retinal pigment epithelium (RPE) secreted-factor, pigment epithelium derived factor (PEDF) secreted/derived from primary or iPSC-derived retinal pigment epithelium (RPE)RPE, dramatically inhibitsed the cell growth of iPSCs. PEDF was detected abundantly in culture supernatant media of primary and iPSC-derived RPE. We examined the gene expression in primary RPE and iPS-derived RPE. Two samples: RPE derived from 253G1 iPSC, Primary RPE.
Project description:We show that Retinal pigment epithelium (RPE) secreted-factor, pigment epithelium derived factor (PEDF) secreted/derived from primary or iPSC-derived retinal pigment epithelium (RPE)RPE, dramatically inhibitsed the cell growth of iPSCs. PEDF was detected abundantly in culture supernatant media of primary and iPSC-derived RPE. We examined the gene expression in primary RPE and iPS-derived RPE.
Project description:Our purpose was to investigate genes and molecular mechanisms involved in patients with Leber congenital amaurosis (LCA). Fibroblasts from two unrelated clinically-identified patients (Coriell) were reprogrammed to pluripotency by retroviral transduction. These human induced Pluripotent Stem Cells (hiPSCs) were differentiated into neural stem cells (NSC) that mimicked the neural tube stage and retinal pigmented epithelial (RPE) cells that could be targeted by the disease. A genome wide transcriptome analysis was performed with Affymetrix Exon Array GeneChipM-BM-., comparing LCA-hiPSCs derivatives to controls. The aim was to identify differentially expressed genes which may be associated with early developmental defect before the establishment of mature retinal circuitry. We analyzed iPSC-derived neural stem cells from LCA patient's fibroblast (n=2) and iPSC-derived neural stem cells from healthy people fibroblast (n=2). A total of 21 samples were analyzed : 9 NSC derived from iPSC LCA and 12 NSC derived from wild-type iPSC.