Project description:Human milk is highly recommended for infant during the first six month of life by World Healthy Organisation (WHO). Human milk is not only rich in macro-nutritional components, but also rich in cells and molecules. MicroRNAs are small non-coding RNAs, which enriched in human milk. These molecules are vital in enormous biological and cellular functions including immune system and in response to infections. By using deep sequencing method, 770,374,554 raw reads were generated from all samples (n=26). Then, filter analysis was done to remove 81,091,772 (10.5%), and 689,282,782 clean reads (89.5%) were considered as clean reads, which was retained for the subsequent bioinformatics analysis. Annotation and matching reads to miRBase revealed1780 mature known microRNAs identified in human milk cells and lipids derived from healthy, cold and other infection types mothers. In particular, 1680 known microRNAs were determined in infected mothers (n=14), while 1,606 known microRNAs in healthy mothers (n=12). Of these known microRNAs, 453 microRNAs were differentially expressed (p<0.05) between healthy and infected samples. The majority of the highly expressed miRNAs in all samples, in particular top 20 microRNAs, were also differentially expressed between healthy and infections. Further, 592 novel mature microRNA sequences were predicted, with only 65,878 total reads. Amongst the total reads of the novel microRNAs, top 20 novel miRNAs were found to contributed in 73.3% (total reads 48,295) of the total reads (65,878).
Project description:We report the lncRNAs transcribed in the human primary monocyte cells. We performed deep RNA sequencing from four healthy individuals. In addition, the raw RNA-Seq data from 11 human monocyte samples were selected from public databases and generated a total ~1.7 billion reads. We identified ~ 8,000 lncRNAs from all the datasets of which more than 1,000 of them have not been previously reported in monocytes. We also validated a few of these novel lncRNAs in monocytes and other hematopoetic cell types. The other 11 datasets were taken from the following: ENCSR000CUC 6 samples E-MTAB-2399 4 samples GSM1526678
Project description:Purpose: To ensure that ABX464 acted specifically on HIV splicing and did not significantly or globally affect the splicing events of human genes, we used a high-throughput RNAseq approach. Many genome-wide expression studies of HIV infection are based on analyses of total peripheral blood mononuclear cells (PBMCs), which consist of over a dozen cell subsets, including T cells, B cells, NK cells and monocytes Methods: The CD4 T cells were uninfected or infected with the YU2 strain and were untreated or treated for 6 days with ABX464, followed by high-throughput RNAseq. Each raw dataset of the samples contained between 44 and 105 million single-end reads (50 bp), with an average of approximately 60 million raw reads per sample Results: Approximately 98% of the total raw reads were mapped to the human genome sequence (GRCh38), giving an average of 60 million human reads per sample for further analyses. The reads that were correctly mapped (approximately 98% of total input reads) to the gene and transcript locations (GTF annotation file) Conclusions: The MDS of our gene expression data showed, without any outliers, that the different donors segregated well and distributed into the DMSO (untreated) and ABX464 treatments that were infected or uninfected. The displayed variance was donor-dependent (clustered by donor) but treatment-independent (no data structure related to the different treatments), which suggests that the ABX464 molecule did not induce a major difference in CD4 T cell gene expression.
Project description:We aimed to identify aberrantly expressed microRNA and mRNA expression profiles of dilated cardiomyopathy (DCM) and explore their potential functions, 10 DCM blood samples and paired healthy control blood samples underwent RNA-sequence.
Project description:We performed the RNA-seq in control samples and FXR1 knockdown samples, and compared the gene expression profiles to explore the effect of FXR1 knockdown on gene expression. The study was performed in H358 cells. Doxycycline inducible shRNA3 (sh3) was used to knockdown FXR1. Control shRNA (ctrl) samples were used to get rid of the effect of Doxycycline treatment. Both the Doxycycline treament for 3 days (D3) and 5 days (D5) samples were collected. Each sample has three repeats (rep 1, rep 2, and rep 3). The mRNA profiles were generated by deep sequencing using Illumina.Sequenced reads were trimmed for adaptor sequence, then mapped to hg19 whole genome using STAR v2.5.3 with parameters --bamRemoveDuplicatesType UniqueIdentical --outSAMmultNmax 1. Raw reads and Reads Per Kilobase per Megabase of library size (RPKM) were calculated using HOMER (PMID: 20513432). Differential gene expression was analyzed using R package DESeq2 using the raw reads.
Project description:Twelve clinically healthy backgrounded cattle (n=6 vaccinated, n=6 non-vaccinated), over four time points (median age in days: 107, 114, 183, 230) were selected for whole blood (Tempus Blood RNA Tubes) mRNA sequencing via NovaSeq 6000 S4 workflow. Sequenced raw reads (~35M/sample) were analyzed for the influence of time (immunological development) and vaccination with a commercial modified live viral multivalent vaccine on host gene expression.