Project description:The opportunistic pathogen Staphylococcus aureus is carried asymptomatically by about one-third of the human population. Body sites known to be colonized by S. aureus are the skin, nasopharynx and gut. In particular, the mechanisms that allow S. aureus to pass the gut epithelial barrier and to invade the bloodstream are poorly understood. Therefore, our present study was aimed at investigating possible differences between gut-colonizing and bacteremia isolates of S. aureus. To this end, 74 gut-colonizing isolates from healthy individuals and 144 blood-culture isolates were characterized by whole-genome sequencing. Subsequently, the cellular and extracellular proteomes of six representative isolates were examined by mass spectrometry. Lastly, the virulence potential of these isolates was evaluated using infection models based on human gut epithelial cells, blood cells, and a small animal infection model. Intriguingly, our results show that gut-colonizing and bacteremia isolates with the same sequence type (ST1 or ST5) are very similar at the genomic and proteomic levels. Nonetheless, they display differences in virulence, but gut-colonizing isolates may be more virulent than bacteremia isolates and vice versa. Importantly, we show that the main decisive factor preventing infection of gut epithelial cells in vitro is the presence of a tight barrier. Based on our present observations, we propose that the integrity of the gut epithelial layer, rather than the pathogenic potential of a gut-colonizing S. aureus strain, is the main decisive factor that determines whether this colonizer will become an invasive pathogen.
Project description:Analysis of transcriptional profiles in whole blood from patients with Staphylococcus aureus infection. The hypothesis tested is that transcriptional profile heterogeneity will reflect patient clinical heterogeneity.
Project description:Investigation of baseline transcription activity of two different clinical isolates of Staphylococcus aureus with two different susceptibility levels to the antibiotics Vancomycin and Daptomycin.
Project description:Investigation of baseline transcription activity of two different clinical isolates of Staphylococcus aureus with two different susceptibility levels to the antibiotics Vancomycin and Daptomycin. Two different strains of Staphylococcus aureus, one that is fully Vancomycin and Daptomycin Sensitive and one with decreased Vancomycin and Daptomycin Sensitivity - grown to mid-log phase in rich broth.
Project description:Staphylococcus aureus is one of the first and most prevalent pathogens cultured from the airways of cystic fibrosis (CF) patients, which can persist there for extended periods. Airway infections in CF patients are characterized by a strong inflammatory response of highly recruited neutrophils. One killing mechanism of neutrophils is the formation of neutrophil extracellular traps (NETs), which capture and eradicate bacteria by extracellular fibers of neutrophil chromatin decorated with antimicrobial granule proteins. S. aureus secretes nuclease, which can degrade NETs. We hypothesized, that S. aureus adapts to the airways of CF patients during persistent infection by escaping from NET-mediated killing via an increase of nuclease activity. Sputum samples of CF patients with chronic S. aureus infection were visualized by confocal microscopy after immuno-fluorescence staining for NET-specific markers, S. aureus bacteria and overall DNA structures. Nuclease activity was analyzed in sequential isogenic long persisting S. aureus isolates, as confirmed by whole genome sequencing, from an individual CF patient using a FRET-based nuclease activity assay. Additionally, some of these isolates were selected and analyzed by qRT-PCR to determine the expression of nuc1 and regulators of interest. NET-killing assays were performed with clinical S. aureus isolates to evaluate killing and bacterial survival depending on nuclease activity. To confirm the role of nuclease during NET-mediated killing, a clinical isolate with low nuclease activity was transformed with a nuclease expression vector (pCM28nuc). Furthermore, two sputa from an individual CF patient were subjected to RNA-sequence analysis to evaluate the activity of nuclease in vivo. In sputa, S. aureus was associated to extracellular DNA structures. Nuclease activity in clinical S. aureus isolates increased in a time-and phenotype-dependent manner. In the clinical isolates, the expression of nuc1 was inversely correlated to the activity of agr and was independent of saeS. NET-mediated killing was significantly higher in S. aureus isolates with low compared to isolates with high nuclease activity. Importantly, transformation of the clinical isolate with low nuclease activity with pCM28nuc conferred protection against NET-mediated killing confirming the beneficial role of nuclease for protection against NETs. Also, nuclease expression in in vivo sputa was high, which underlines the important role of nuclease within the highly inflamed CF airways. In conclusion, our data show that S. aureus adapts to the neutrophil-rich environment of CF airways with increasing nuclease expression most likely to avoid NET-killing during long-term persistence.
Project description:Gene expression in human umbilical vein endothelial cells (HUVEC) was investigated by microarray analysis after 4 h infection with S. aureus isolated from healthy nasal carriers (n=5) and from blood (n=5) of septic patients. All bacterial isolates were spa-typed and characterized with a DNA microarray to determine the presence of virulence genes. Experiment Overall Design: Five S. aureus (designated BI-BV) from a collection of blood culture isolates (Department of Clinical Microbiology, Ryhov County Hospital, Jönköping, Sweden) from septic patients were selected. Isolates from patients with diabetes, endocarditis, drug addicts and persons with an operation within the three last years were excluded. Two S. aureus isolates were from patients with an abscess in the psoas muscle, two from patients with spondylitis and one from a wound in the neck. Another five isolates (CI-CV) were randomly selected from a collection of S. aureus obtained from healthy male nasal carriers collected in a previous study.
Project description:Staphylococcus aureus (S. aureus) is a known pathogen able to infect humans and animals. Human S. aureus isolates are often associated with carriage of Sa3int prophages combined with loss of beta-hemolysin production due to gene disruption, whereas animal isolates are positive for beta-hemolysin associated with absence of Sa3int prophages. Sa3int prophages are known to contribute to staphylococcal fitness and virulence in human host by providing human-specific virulence factors encoded on the prophage genome. Strain-specific differences in regard to phage transfer, lysogenization and induction are attributable to yet unknown staphylococcal factors specifically influencing prophage gene expression. In this work we used tagRNA-sequencing approach to specifically search for these unknown host factors and differences in prophage gene expression. For this purpose, we established a workflow revealing the first direct comparison for differential gene expression analysis on two distinct single-lysogenic S. aureus isolates. Further, global gene expression patterns were investigated in two S. aureus isolates upon mitomycin C treatment and compared to uninduced conditions. This provides new insights into the tightly linked host-phage interaction network.