Project description:To understand the role of MEF2A in iPSC-CMs maturation, we used MEF2A-siRNA to reduce MEF2A transcription in iPSC-CMs and then examined the changes in transcription levels
Project description:Human pluripotent stem cell-derived cardiomyocytes (CMs) are a promising tool for cardiac cell therapy. To optimize graft cells for cardiac reconstruction, we compared the engraftment efficiency of intramyocardially-injected undifferentiated-induced pluripotent stem cells (iPSCs), day4 mesodermal cells, and day8, day20, and day30 purified iPSC-CMs after initial differentiation by tracing the engraftment ratio (ER) using in vivo bioluminescence imaging. This analysis revealed the ER of day20 CMs was significantly higher compared to other cells. Transplantation of day20 CMs into the infarcted hearts of immunodeficient mice showed significant functional improvement. Moreover, the imaging signal and ratio of Ki67-positive CMs at 3 months post injection indicated engrafted CMs proliferated in the host heart. Although this graft growth reached a plateau at 3 months, histological analysis confirmed progressive maturation from 3 to 6 months. These results suggested that day20 CMs had very high engraftment, proliferation, and therapeutic potential in host mouse hearts. Differentiated cells, N=10 Undifferentiated pluripotent stem cells, N=1 Heart samples, N=6
Project description:We used human iPSC-CMs generated from healthy individuals and performed RNA-sequencing after 7 days of trastuzumab treatment to examine the mechanism associated with contraction dysfunction in iPSC-CMs after trastuzumab treatment. Transcriptome analysis revealed the key role of an altered energy metabolism pathway for cardiomyocytes in the disease pathogenesis.
Project description:We used human iPSC-CMs generated from healthy individuals and performed RNA-sequencing after 5 days of trastuzumab treatment to examine the mechanism associated with cardiac dysfunction in iPSC-CMs after iron treatment. Transcriptome analysis revealed broad changes in cardiovascular development and processes.
Project description:Many oncology drugs have been found to induce cardiotoxicity in a subset of patients, which significantly limits their clinical use and impedes the benefit of lifesaving anti-cancer treatments. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) carry donor-specific genetic information and have been proposed for explore the inter-individual difference in oncology drug-induced cardiotoxicity. Herein, we evaluated the inter- and intra- individual variability of iPSC-CM-related assays and presented a practical approach for using donor-specific iPSC-CMs to predict personalized doxorubicin (DOX)-induced cardiotoxicity (DIC) prior to chemotherapy. Our findings demonstrated that donor-specific iPSC-CMs exhibited greater line-to-line variability than the intra-individual variability in impedance cytotoxicity and transcriptome assays. The variable and dose-dependent cytotoxic responses of iPSC-CMs resembled those observed in clinical practice, and largely replicated the reported mechanisms of DIC. By categorizing iPSC-CMs into DOX-resistant and DOX-sensitive cell lines based on their phenotypic reactions to DOX, we found that the sensitivity of donor-specific iPSC-CMs to DOX may predict in vivo DIC risk. Furthermore, we assessed the limitations of the model for identification of potential genetic/molecular biomarker and pinpointed a differentially expressed gene, DND microRNA-mediated repression inhibitor 1 (DND1), between the DOX-resistant and DOX-sensitive iPSC-CMs. We also discussed the selection of DOX dose and exposure duration for inter-individual variability of DIC assessment. Our results support the utility of donor-specific iPSC-CMs in assessing inter-individual difference and enabling personalized cardiotoxicity prediction. Further studies will encompass a large panel of donor-specific iPSC-CMs to investigate the role of the DND1 and known DIC genetic variants, and to identify potential novel molecular and genetic biomarkers for predicting DOX and other oncology drug-induced cardiotoxicity.
Project description:Tandem Mass Tag-Based proteomic analysis was performed to detect protein expression changes between gene correction and LMNA mutation iPSC-CMs