Project description:The increasing antibiotic resistance of Klebsiella pneumoniae poses a serious threat to global public health. To investigate the antibiotic resistance mechanism of Klebsiella pneumonia, we performed gene expression profiling analysis using RNA-seq data for clinical isolates of Klebsiella pneumonia, KPN16 and ATCC13883. Our results showed that mutant strain KPN16 is likely to act against the antibiotics through increased increased butanoate metabolism and lipopolysaccharide biosynthesis, and decreased transmembrane transport activity.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes, 5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. This submission contains the results from six Klebsiella strains (four Klebsiella variicola: AJ005, AJ292, 03-311-0071, 04153260899A and two Klebsiella pneumoniae: AJ218, KPC2) grown in either RPMI or pooled human sera. Six replicates of each condition were subjected to shotgun proteomics and label-free MS1-based quantitation.
Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
Project description:To investigate the whole-genome gene expression difference between the wild-type and capsule deletion mutant in Klebsiella pneumoniae MGH 78578. The mutants analyzed in this study are further described in Huang T.W., Stapleton J.C., Chang H.Y., Tsai S.F., Palsson B.O., Charusanti P. Capsule removal via lambda-Red knockout system perturbs biofilm formation and fimbriae extression in Klesiella pneumoniae MGH 78578 (manuscript submission) A six chip study using total RNA recovered from three separate wild-type cultures and three separate cultures of a capsule deltion mutant of Klebsiella pneumoniae MGH 78578. The capsule gene cluster (KPN_02493 to KPN_02515) was entirely removed in the capsule deletion mutant. Each chip measures the expression level of 5,305 genes from Klebsiella pneumoniae MGH 78578 and the associated five plasmids (pKPN3, pKPN4, pKPN5, pKPN6 and pKPN7) with 50-mer oligo tiling array with 30-mer spacer.
Project description:The emergence and spread of polymyxin resistance, especially among Klebsiella pneumoniae isolates threaten the effective management of infections. This study profiled for polymyxin resistance mechanisms and investigated the activity of polymyxins plus vancomycin against carbapenem- and polymyxin-resistant K. pneumoniae.
Project description:Antimicrobial resistance (AMR) arises from complex genetic and regulatory changes, including single mutations, gene acquisitions or cumulative effects. Advancements in genomics and proteomics facilitate more comprehensive understanding of the mechanisms behind antimicrobial resistance. In this study, 74 clinically obtained Klebsiella pneumoniae isolates with increased meropenem and/or imipenem MICs were characterized by broth microdilution and PCR to check for the presence of carbapenemase genes. Subsequently, a representative subset of 15 isolates was selected for whole genome sequencing (WGS) by Illumina and Nanopore sequencing, and proteomic analysis by liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the mechanisms underlying the differences in carbapenem susceptibility of Klebsiella pneumoniae isolates. Identical techniques were applied to characterize 4 mutants obtained after sequential meropenem exposure. We demonstrated that in clinically obtained isolates, increased copy numbers of blaOXA-48 containing plasmids, combined with OmpK36 loss, contributed to high carbapenem MICs without involvement of OmpK35 or other porins or efflux systems. In the meropenem exposed mutants, increased copy numbers of blaCTX-M-15 or blaOXA-48 containing plasmids, combined with OmpK36 loss was demonstrated. The OmpK36 loss resulted from the insertion of IS1 transposable elements or partial deletion of the ompK36 gene. Additionally, we identified two mutations, C59A and C58A, in the DNA coding the copA antisense RNA of IncFII plasmids and multiple mutations of an IncR plasmid, associated with increased plasmid copy numbers. This study demonstrates that by combining WGS and LC-MS/MS, the effect of genomic changes on protein expression related to antibiotic resistance and the mechanisms behind antibiotic resistance can be elucidated.
Project description:Investigation of whole genome gene expression level in Klebsiella pneumoniae MGH78578 grown up to mid-exponential phase in M9 minimal media supplemented with 0.2% glucose