Project description:Apple (Malus domestica Borkh) is an important fruit crop cultivated in a broad range of environmental conditions. Apple fruit, and specifically peel tissue, ripening is a physiological process whose molecular regulatory networks response to different environments are still not sufficiently investigated. In this study, the influence of low (20 m) and high (750 m) altitude environmental conditions in peel tissue was assessed by physiological measurements combined with global metabolite and protein expression profiling during apple fruit development and ripening. Although apple fruit ripening was unaffected by the different environmental conditions, however several key color parameters, such as redness and the color percentage index, were induced by high altitude. Consistent with this, increased level of anthocyanin and other phenolic compounds, including cyanidin-3-O-galactoside, quercetin-3-O-rhamnoside, quercetin-3-O-rutinoside and chlorogenic acid were identified in apple peel at high altitude. Also, high altitude environment, particularly, at the ripening period, up-accumulated various carbohydrates (eg., arabinose, xylose and sucrose) while repressed glutamic acid and several related proteins such as glycine hydroxymethyltransferase and glutamate���glyoxylate aminotransferase. Other processes affected by high altitude concerned the TCA cycle, the synthesis of oxidative/defense enzymes, and the accumulation of photosynthetic proteins. Finally, we constructed a metabolite-protein network depicting the impact of altitude on peel ripening. These data provide insights into physiological processes linked to apple peel ripening across different climatic conditions and will assist in efforts to improve apple fruit appeal and quality.
Project description:Apple (Malus domestica Borkh) is an important fruit crop cultivated in a broad range of environmental conditions. Apple fruit, and specifically peel tissue, ripening is a physiological process whose molecular regulatory networks response to different environments are still not sufficiently investigated. In this study, the influence of low (20 m) and high (750 m) altitude environmental conditions in peel tissue was assessed by physiological measurements combined with global metabolite and protein expression profiling during apple fruit development and ripening. Although apple fruit ripening was unaffected by the different environmental conditions, however several key color parameters, such as redness and the color percentage index, were induced by high altitude. Consistent with this, increased level of anthocyanin and other phenolic compounds, including cyanidin-3-O-galactoside, quercetin-3-O-rhamnoside, quercetin-3-O-rutinoside and chlorogenic acid were identified in apple peel at high altitude. Also, high altitude environment, particularly, at the ripening period, up-accumulated various carbohydrates (eg., arabinose, xylose and sucrose) while repressed glutamic acid and several related proteins such as glycine hydroxymethyltransferase and glutamate–glyoxylate aminotransferase. Other processes affected by high altitude concerned the TCA cycle, the synthesis of oxidative/defense enzymes, and the accumulation of photosynthetic proteins. Finally, we constructed a metabolite-protein network depicting the impact of altitude on peel ripening. These data provide insights into physiological processes linked to apple peel ripening across different climatic conditions and will assist in efforts to improve apple fruit appeal and quality.
Project description:The study critically evaluate the results of 16S targeted amplicon sequencing performed on the total DNA collected from healthy donors’ blood samples in the light of specific negative controls.
Project description:Iron-rich pelagic aggregates (iron snow) were collected directly onto silicate glass filters using an electronic water pump installed below the redoxcline. RNA was extracted and library preparation was done using the NEBNext Ultra II directional RNA library prep kit for Illumina. Data was demultiplied by GATC sequencing company and adaptor was trimmed by Trimgalore. After trimming, data was processed quality control by sickle and mRNA/rRNA sequences were sorted by SortmeRNA. mRNA sequences were blast against NCBI-non redundant protein database and the outputs were meganized in MEGAN to do functional analysis. rRNA sequences were further sorted against bacterial/archeal 16S rRNA, eukaryotic 18S rRNA and 10,000 rRNA sequences of bacterial 16S rRNA, eukaryotic 18S rRNA were subset to do taxonomy analysis.