Project description:Conjugative plasmids, major vehicles for the spread of antibiotic resistance genes, often contain multiple toxin‒antitoxin (TA) systems. However, the physiological functions of TA systems remain obscure. By studying TA families commonly found on colistin-resistant IncI2 mcr-1-bearing plasmids, we discovered that the HicAB TA, acts as a crucial addiction module to increase horizontal plasmid‒plasmid competition.
2024-12-25 | GSE284789 | GEO
Project description:mobile colistin resistant gene mcr-1 positive E. coli
| PRJNA1098979 | ENA
Project description:Intracellular transposition of Mobile Genetic Elements associated with the colistin resistance gene mcr-1
Project description:Identification of mobile colistin resistance genes (mcr-1.1, mcr-5, mcr-8.1) in Enterobacteriaceae of human and animal origins, Nigeria.
| PRJNA631965 | ENA
Project description:MCR and colistin resistance in nigeria
| PRJNA860154 | ENA
Project description:Mobile colistin resistance mcr-4.3- and mcr-4.6-harboring plasmids in livestock- and human-retrieved Enterobacterales in the Netherlands
Project description:Carbapenem-resistant Acinetobacter baumannii (CRAB) is a Priority 1 (Critical) pathogen urgently requiring new antibiotics. Polymyxins are a last-line option against CRAB-associated infections. This transcriptomic study utilized a CRAB strain to investigate mechanisms of bacterial killing with polymyxin B, colistin, colistin B and colistin/sulbactam combination therapy. After 4 h of 2 mg/L polymyxin monotherapy, all polymyxins exhibited common modes of action which primarily involved disruption to amino acid and fatty acid metabolism. Of the three monotherapies, polymyxin B induced the greatest number of differentially expressed genes (DEGs), including for genes involved with fatty acid metabolism. Gene disturbances with colistin and colistin B were highly similar (89% common genes for colistin B), though effects on gene expression were generally lower (0-1.5-fold in most cases) with colistin B. Colistin alone (2 mg/L) or combined with sulbactam (64 mg/L) resulted in rapid membrane disruption as early as 1 h. Transcriptomic analysis of this combination revealed the effects were driven by colistin and included disturbances in fatty acid synthesis and catabolism and inhibition of nutrient uptake. Combination therapy produced substantially higher fold changes in 72% of DEGs shared with monotherapy, resulting in substantially greater reductions in fatty acid biosynthesis and increases in biofilm, cell wall and phospholipid synthesis. This indicates synergistic bacterial killing with the colistin/sulbactam combination results from a systematic increase in perturbation of many genes associated with bacterial metabolism. These mechanistic insights enhance our understanding of bacterial responses to polymyxin mono- and combination therapy and will assist to optimize polymyxin use in patients. Carbapenem-resistant Acinetobacter baumannii (CRAB) is a Priority 1 (Critical) pathogen urgently requiring new antibiotics. Polymyxins are a last-line option against CRAB-associated infections. This transcriptomic study utilized a CRAB strain to investigate mechanisms of bacterial killing with polymyxin B, colistin, colistin B and colistin/sulbactam combination therapy. After 4 h of 2 mg/L polymyxin monotherapy, all polymyxins exhibited common modes of action which primarily involved disruption to amino acid and fatty acid metabolism. Of the three monotherapies, polymyxin B induced the greatest number of differentially expressed genes (DEGs), including for genes involved with fatty acid metabolism. Gene disturbances with colistin and colistin B were highly similar (89% common genes for colistin B), though effects on gene expression were generally lower (0-1.5-fold in most cases) with colistin B. Colistin alone (2 mg/L) or combined with sulbactam (64 mg/L) resulted in rapid membrane disruption as early as 1 h. Transcriptomic analysis of this combination revealed the effects were driven by colistin and included disturbances in fatty acid synthesis and catabolism and inhibition of nutrient uptake. Combination therapy produced substantially higher fold changes in 72% of DEGs shared with monotherapy, resulting in substantially greater reductions in fatty acid biosynthesis and increases in biofilm, cell wall and phospholipid synthesis. This indicates synergistic bacterial killing with the colistin/sulbactam combination results from a systematic increase in perturbation of many genes associated with bacterial metabolism. These mechanistic insights enhance our understanding of bacterial responses to polymyxin mono- and combination therapy and will assist to optimize polymyxin use in patients.
Project description:Following the initial demonstration of Helicobacter pyloriâ??s pathogenic potential, evidence has been accumulated that H. pylori is the leading cause of gastric ulcers, carcinoma and lymphoma3. Cholesterol is a physiological constituent of membranes critical for their biophysical properties, but is stigmatised as mediating detrimental effects in obesity and cardiovascular disease. Since H. pylori is auxotrophic for cholesterol, we explored the assimilation of cholesterol by H. pylori upon infection. Here we show that H. pylori follows a cholesterol gradient and extracts the lipid from plasma membranes of epithelial cells for subsequent glycosylation. Cholesterol promotes phagocytosis of H. pylori by antigen-presenting cells such as macrophages and dendritic cells and enhances antigen-specific T cell responses. Consistently, cholesterol-rich diet during bacterial challenge leads to a reduction of the H. pylori burden in the stomach. Intrinsic a-glycosylation of cholesterol abrogates phagocytosis of H. pylori and subsequent T cell activation. Hence, we propose a novel mechanism regulating host-pathogen interaction which describes glycosylation of a lipid tipping the scales towards immune evasion or response. color-swap dye-reversal hybridizations
Project description:Colistin sulfate (polymixin E) is an antibiotic prescribed with resurging frequency for multidrug resistant gram negative bacterial infections. It is associated with nephrotoxicity in humans in up to 33% of cases. Little is known regarding genes involved in colistin nephrotoxicity. A murine model of colistin-mediated kidney injury was developed. C57/BL6 mice were administered saline or colistin at a dose of 16mg/kg/day in 2 divided doses. An Illumina gene expression array was performed on kidney RNA harvested 72 hours after first colistin dose to identify differentially expressed genes early in drug treatment. Array platform was MouseWG-6, 48,000 probes. Drug given intraperitoneal.