Project description:The giant panda (Ailuropoda melanoleuca) stands as a flagship and umbrella species, symbolizing global biodiversity. While traditional assisted reproductive technology faces constraints in safeguarding the genetic diversity of giant pandas and bolstering the population size of giant pandas, induced pluripotent stem cells (iPSCs) known for their capacity to differentiate into diverse cells types, including germ cells, present a transformative potential for conservation of endangered animals. In our study, we isolated primary fibroblast cells from an individual giant panda and successfully generated giant panda induced pluripotent stem cells (GPiPSCs) through a non-integrating episomal vectors reprogramming method. Characterization of these GPiPSCs revealed their state of primed pluripotency and demonstrated their potential for differentiation. Furthermore, we innovatively formulated a species-specific chemically defined FACL medium and unraveled the intricate signaling pathway networks responsible for maintaining the pluripotency and fostering cell proliferation of GPiPSCs. This study provides key insights into rare species iPSCs, offering materials for panda characteristics research and laying the groundwork for in vitro giant panda gamete generation, potentially aiding endangered species conservation.
Project description:we applied RNA-seq to detect novel expressed transcripts in 12 tissues of giant pandas, using a transcriptome reconstruction strategy combining reference-based and de novo methods. Then we used mass spectrometry method to identify proteomes of five selected tissues, aiming at validating these novel full-length genes we identified.
Project description:Gene differential expression studies can serve to explore and understand the laws and 16 characteristics of animal life activities, and the difference in gene expression between different 17 animal tissues have been well demonstrated and studied. However, for the world-famous rare 18 and protected species giant panda (Ailuropoda melanoleuca), only the transcriptome of the blood 19 and spleen has been reported separately. Here, in order to explore the transcriptome differences 20 between the different tissues of the giant panda, transcriptome profiles of the heart, liver, spleen, 21 lung, and kidney from five captive giant pandas were constructed with Illumina HiSeq 2500 22 platform. The comparative analysis of the inter-tissue gene expression patterns was carried out 23 based on the generated RNA sequencing datasets. Analyses of Gene Ontology (GO) enrichment, 24 Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction 25 (PPI) network were performed according to the identified differentially expressed genes (DEGs). 26 We generated 194.52 GB clean base data from twenty-five sequencing libraries and identified 27 18,701 genes, including 3492 novel genes. With corrected p-value < 0.05 and |log2FoldChange| > 28 2, we finally obtained 921, 553, 574, 457, and 638 tissue-specific DEGs in the heart, liver, spleen, 29 lung, and kidney, respectively. In addition, we identified TTN, CAV3, LDB3, TRDN, and 30 ACTN2 in the heart; FGA, AHSG, and SERPINC1 in the liver; CD19, CD79B, and IL21R in the 31 spleen; NKX2-4 and SFTPB in the lung; GC and HRG in the kidney as hub genes in the PPI 32 network. The results of the analyses showed a similar gene expression pattern between the spleen 33 and lung. This study provided for the first time the heart, liver, lung, and kidney’s transcriptome 34 resources of the giant panda, and it provided a valuable resource for further genetic research or 35 other potential research.