Project description:Gene expression was compared between non-stress Arabidopsis plants (0 hr salt treatment) and salt treated plants (2 hrs and 10 hrs salt treatment).
Project description:Our study identified long term salt stress treatment to induce symptoms similar to developmental senescence. In order to identify possible crosstalk components shared between developmental and salt-triggered senescence. We first obtained the expression profile of Arabidopsis leaves under the condition of salt-induced senescence (4 days) and then compared it with the transcriptome of developmental leaf senescence. Wild type Arabidopsis Col-0 plants were grown hydroponically and treated with or without 150mM NaCl and harvested after 4 days of treatment.
Project description:15N metabolic labeling was employed to screen the phosphorylated substrates of SOS2 by comparing the phosphoproteomics of Arabidopsis WT and sos2 mutant under NaCl treatment
Project description:Transcriptional profiling of WT macrophages infected with WT L. monocytogenes for 180 minutes, with or without CAPE treatment Keywords: Drug comparison.
Project description:Our study identified long term salt stress treatment to induce symptoms similar to developmental senescence. In order to identify possible crosstalk components shared between developmental and salt-triggered senescence. We first obtained the expression profile of Arabidopsis leaves under the condition of salt-induced senescence (4 days) and then compared it with the transcriptome of developmental leaf senescence.
Project description:Transcriptional profiling of WT macrophages infected with WT L. monocytogenes for 180 minutes, with or without CAPE treatment Keywords: Drug comparison. Experiment in WT background, with WT bacteria, with or without drug treatment. Multiple biological replicates (see array names), with one replicate per array.
Project description:Sprobolus virginicus is a halophytic C4 grass found in worldwide from tropical to warm temperate regions. A Japanese genotype showed a salinity tolerance up to 1,500 mM NaCl, a three-fold higher concentration than seawater salinity. To identify key genes involved in the regulation of salt tolerance in S. virginicus, random cDNA libraries were constructed from salt-treated leaves, and were introduced into Arabidopsis for salt tolerant plant screening. Eight independent transgenic lines were found to be more salt tolerant than wild type from the screen of 3011 lines on the medium containing 175 mM NaCl. Among the selected lines, two contained cDNAs encoding glycine-rich RNA-binding proteins (GRPs). To identify transcriptomic change in the GRP-transgenic line, we performed microarray analysis of the transgenic line and WTunder salt stress.
Project description:Subfamily 2 of SNF1-related protein kinase (SnRK2) plays important roles in plant abiotic stress responses as a global positive regulator of abscisic acid signaling. In the genome of the model tree Populus trichocarpa, 12 SnRK2 genes have been identified, and some are upregulated by abiotic stresses. In this study, we heterologously overexpressed the PtSnRK2 genes in Arabidopsis thaliana and found that overexpression of PtSnRK2.5 and PtSnRK2.7 genes enhanced stress tolerance. In the PtSnRK2.5 and PtSnRK2.7 overexpressors, chlorophyll content and root elongation were maintained under salt stress conditions, leading to higher survival rates under salt stress compared with those in the wild type. Transcriptomic analysis revealed that PtSnRK2.7 overexpression affected stress-related metabolic genes, including lipid metabolism and flavonoid metabolism, even under normal growth conditions. However, the stress response genes reported to be upregulated in Arabidopsis SRK2C/SnRK2.6 and wheat SnRK2.8 overexpressors were not changed by PtSnRK2.7 overexpression. Instead, PtSnRK2.7 overexpression widely and largely influenced the transcriptome in response to salt stress; genes related to transport activity, including anion transport-related genes, were characteristically upregulated, and a variety of metabolic genes were specifically downregulated. We also found that the salt stress response genes were greatly upregulated in the PtSnRK2.7 overexpressor. Taken together, poplar subclass 2 PtSnRK2 genes can modulate salt stress tolerance in Arabidopsis, through the activation of cellular signaling pathways in a different manner from that by herbal subclass 2 SnRK2 genes.
Project description:Salt stress is one of the most severe environmental conditions which cause huge losses in crop production worldwide. We identified a novel calcium-binding protein and used the Affymetrix whole-genome arrays to define downstream targets of this important protein. We used the microarrays to reveal the effect of rsa1-1 mutation on global gene expression in response to 120 mM Nacl for 0 or 24 h. A set of genes differentially expressed in rsa1-1 with or without salt stress are identified. Six-day-old seedlings of Arabidopsis thaliana wild type (Columbia gl1 expressing RD29A::LUC transgene) and rsa1-1 mutant seedlings subjected to salt stress with 120 mM NaCl for 0, or 24 h were used for total RNA extraction and hybridizations with Affymetrix ATH1 GeneChips. There are three biological replicate per genotype.