Project description:Meristem culture and somatic embryogenesis is an effective tool for virus elimination of vegetatively propagated crops including grapevine. While they both are proved to be useful to eliminate the main grapevine viruses their efficiency differs according to the virus and the variety. In our work we investigated their efficiency using small RNA high-throughput sequencing as virus diagnostic method. Field grown mother plants of four clones representing three cultivars, infected with different viruses and viroids were selected for sanitation via somatic embryogenesis and meristem culture. Our results show that the sanitation with SE was efficient against all of the presenting viruses, including grapevine Pinot gris virus, grapevine rupestris vein feathering virus and grapevine Syrah virus 1, having no data using somatic embryogenesis for their elimination. In case of other viruses and viroids such as GFkV, GRSPaV, GYSVd-1, HSVd this study confirms the findings of earlier researches, that SE is a possible way for elimination. While the efficiency of the elimination of different viruses was high, in case of viroids this ratio was lower. Our work demonstrated that efficiency of SE is comparable to the technically difficult meristem culture technique, and show promising way for the high demand of the production of virus-free grapevine in the future.
Project description:Cancer cachexia has been linked to gut bacterial alterations, but alterations of gut viruses, mostly bacteriophages, have not yet been explored. We performed shotgun metagenomic sequencing of DNA from stool samples of 78 cachectic and 42 non-cachectic cancer patients. K-mer-based matching to reference databases revealed abundance variations of bacteria and viruses. Beyond bacterial alterations, cachectic patients exhibited significantly lower bacteriophage abundance, predominantly affecting Caudovirales and Siphoviridae species (double-stranded DNA) but also Inoviridae and Microviridae families (single-stranded DNA).