Project description:The domestic goat, Capra hircus (2n=60), is one of the most important domestic livestock species in the world. Here we report its high quality reference genome generated by combining Illumina short reads sequencing and a new automated and high throughput whole genome mapping system based on the optical mapping technology which was used to generate extremely long super-scaffolds. The N50 size of contigs, scaffolds, and super-scaffolds for the sequence assembly reported herein are 18.7 kb, 3.06 Mb, and 18.2 Mb, respectively. Almost 95% of the supper-scaffolds are anchored on chromosomes based on conserved syntenic information with cattle. The assembly is strongly supported by the RH map of goat chromosome 1. We annotated 22,175 protein-coding genes, most of which are recovered by RNA-seq data of ten tissues. Rapidly evolving genes and gene families are enriched in metabolism and immune systems, consistent with the fact that the goat is one of the most adaptable and geographically widespread livestock species. Comparative transcriptomic analysis of the primary and secondary follicles of a cashmere goat revealed 51 genes that were significantly differentially expressed between the two types of hair follicles. This study not only provides a high quality reference genome for an important livestock species, but also shows that the new automated optical mapping technology can be used in a de novo assembly of large genomes. Corresponding whole genome sequencing is available in NCBI BioProject PRJNA158393. We have sequenced a 3-year-old female Yunnan black goat and constructed a reference sequence for this breed. In order to improve quality of gene models, RNA samples of ten tissues (Bladder, Brain, Heart, Kidney, Liver, Lung, Lymph, Muscle, Ovarian, Spleen) were extracted from the same goat which was sequenced. To investigate the genic basis underlying the development of cashmere fibers using the goat reference genome assembly and annotated genes, we extracted RNA samples of primary hair follicle and secondary hair follicle from three Inner Mongolia cashmere goats and conducted transcriptome sequencing and DGE analysis. This submission represents RNA-Seq component of study.
Project description:The domestic goat, Capra hircus (2n=60), is one of the most important domestic livestock species in the world. Here we report its high quality reference genome generated by combining Illumina short reads sequencing and a new automated and high throughput whole genome mapping system based on the optical mapping technology which was used to generate extremely long super-scaffolds. The N50 size of contigs, scaffolds, and super-scaffolds for the sequence assembly reported herein are 18.7 kb, 3.06 Mb, and 18.2 Mb, respectively. Almost 95% of the supper-scaffolds are anchored on chromosomes based on conserved syntenic information with cattle. The assembly is strongly supported by the RH map of goat chromosome 1. We annotated 22,175 protein-coding genes, most of which are recovered by RNA-seq data of ten tissues. Rapidly evolving genes and gene families are enriched in metabolism and immune systems, consistent with the fact that the goat is one of the most adaptable and geographically widespread livestock species. Comparative transcriptomic analysis of the primary and secondary follicles of a cashmere goat revealed 51 genes that were significantly differentially expressed between the two types of hair follicles. This study not only provides a high quality reference genome for an important livestock species, but also shows that the new automated optical mapping technology can be used in a de novo assembly of large genomes. We have sequenced a 3-year-old female Yunnan black goat and constructed a reference sequence for this breed. In order to improve quality of gene models, RNA samples of ten tissues(Bladder, Brain, Heart, Kidney, Liver, Lung, Lymph, Muscle, Ovarian, Spleen) were extracted from the same goat which was sequenced. To investigate the genic basis underlying the development of cashmere fibers using the goat reference genome assembly and annotated genes, we extracted RNA samples of primary hair follicle and secondary hair follicle from three Inner Mongolia cashmere goats and conducted transcriptome sequencing and DEG analysis. Corresponding whole genome sequencing is available in NCBI BioProject PRJNA158393.
Project description:The study confirmed a batch of goat skin and hair follicles miRNA, by high-throughput sequencing methods.316 sequences miRNAs were obtained by the means of analysis and we confirmed the authenticity of 68 known miRNAs and discovered 248 novel miRNAs, as well as 22 miRNAs that havenM-bM-^@M-^Yt been reported before. Through the miRNAs family analysis, we found the co-expressed miRNAs in goat and sheep located in the same region of chromosome, which may play an essential role in skin and follicle development. In addition, the prediction of novel target miRNAs followed by the analysis of target gene pathways indicated that MAPK pathway may have an important effect to the fast growth of skin follicle cell. We sequenced a mixed sample which contains three goat skin in anagen of cashmere
Project description:we used single-cell RNA sequencing (scRNA-seq) and computational models to identify 13 skin cell types in Liaoning Cashmere Goats. We also analyzed the molecular changes by Cell Trajectory Analysis in the development process and revealed the maturation process in gene expression profile in Liaoning Cashmere Goats. Weighted gene co-expression network analysis (WGCNA) explored hub genes in cell clusters related to cashmere formation. Secondary hair follicle dermal papilla cells (SDPCs) play an important role in the growth and density of cashmere. ACTA2, a marker gene of SDPCs, was selected for immunofluorescence (IF) and western blot (WB) verification. Our results indicate that ACTA2 is mainly expressed in SDPCs, and WB results showed different expression levels. COL1A1 is a highly expressed gene in SDPCs, which was verified by IF and WB. We then selected CXCL8 of SDPCs to verify, and prove the differential expression in the coarse type and the fine type of Liaoning Cashmere Goats. Therefore, CXCL8 gene may regulate cashmere fineness. These genes may be involved in regulating the fineness of cashmere in goat secondary hair follicle dermal papilla cells, our research will provide new insights into the mechanism of cashmere growth and cashmere fineness regulation by cells.
Project description:Molecular mechanisms of follicular atresia and prolificacy of mammal remain unclear. We surveyed the single-cell transcriptomic landscape of ovaries from single and prolificacy goat and identified seven ovarian cell types with distinct gene-expression, transcriptional factor networks and reciprocal interactions signatures. In-depth dissection of gene-expression dynamics of granulosa cells (GCs) that displayed development stage-specific expression patterns and specific gene signatures were identified that may reflect developmental competency and ovarian reserve. what’s more, we revealed the origin of theca cells. Further analysis of cell-type-specific prolificacy-associated transcriptional changes uncovered apoptosis, anabolism and response to hormone stimulation as are crucial factor in dominant follicle development and ovulation. Additionally, differentially expressed genes (DEGs) of SERPINE2 can interact with CYP19A1 to promote cell proliferation, inhibit apoptosis and promoting the anabolism were observed in mouse granulosa cells. Thus, our work provides a comprehensive understanding of the cell-type-specific mechanisms underlying goat ovarian prolificacy at single-cell resolution, provides key insights into offers important clues for improving follicle recruitment in vivo and revealing new diagnostic biomarkers and potential therapeutic targets for ovulation disorder.
Project description:Cashmere, also known as soft gold, is produced from secondary hair follicles in Cashmere goats and it’s therefore of significance to investigate the molecular profiles during Cashmere goat hair follicle development. However, our current understanding of the machinery underlying Cashmere goat hair follicle remains largely unexplored and researches regarding hair follicle development mainly used the mouse as a research model. To provides comprehensively understanding on the cellular heterogeneity and cell lineage cell fate decisions, we performed single-cell RNA sequencing on 19,705 single cells from induction (embryonic day 60), organogenesis (embryonic day 90) and cytodifferentiation (embryonic day 120) stage fetus Cashmere goat dorsal skin. Unsupervised clustering analysis identified 16 cell clusters and their corresponding cell types were also successfully characterized. Based on cell lineage inference, we revealed detailed transcriptional gene expression profiles during dermal and epidermal lineage cell fate decisions. These works together delineate unparalleled molecular profiles of different cell populations during Cashmere goat hair follicle morphogenesis and provide a valuable resource for identifying biomarkers during Cashmere goat hair follicle development.
Project description:Molecular mechanisms of follicular atresia and prolificacy of mammal remain unclear. We surveyed the single-cell transcriptomic landscape of ovaries from single and prolificacy goat and identified seven ovarian cell types with distinct gene-expression, transcriptional factor networks and reciprocal interactions signatures. In-depth dissection of gene-expression dynamics of granulosa cells (GCs) that displayed development stage-specific expression patterns and specific gene signatures were identified that may reflect developmental competency and ovarian reserve. what’s more, we revealed the origin of theca cells. Further analysis of cell-type-specific prolificacy-associated transcriptional changes uncovered apoptosis, anabolism and response to hormone stimulation as are crucial factor in dominant follicle development and ovulation. Additionally, differentially expressed genes (DEGs) of SERPINE2 can interact with CYP19A1 to promote cell proliferation, inhibit apoptosis and promoting the anabolism were observed in mouse granulosa cells. Thus, our work provides a comprehensive understanding of the cell-type-specific mechanisms underlying goat ovarian prolificacy at single-cell resolution, provides key insights into offers important clues for improving follicle recruitment in vivo and revealing new diagnostic biomarkers and potential therapeutic targets for ovulation disorder.