Project description:Skin aging is one of the hallmarks of the aging process that causes physiological and morpho-logical changes. Recently, several nutritional studies were conducted to delay or suppress the aging process. This study investigated whether nutritional supplementation of the eggshell membrane (ESM) has a beneficial effect on maintaining skin health and improving the skin ag-ing process using neonatal normal human epidermal keratinocytes (NHEK-Neo). 1 mg/mL of enzymatically hydrolyzed ESM (eESM) upregulated the expression of keratinocyte differentiation markers, including keratin 1, filaggrin and involucrin, and changed the keratinocyte morphology.
Project description:Skin aging is one of the hallmarks of the aging process that causes physiological and morpho-logical changes. Recently, several nutritional studies were conducted to delay or suppress the aging process. This study investigated whether nutritional supplementation of the eggshell membrane (ESM) has a beneficial effect on maintaining skin health and improving the skin aging process in interleukin-10 knockout (IL-10 KO) mice. Oral supplementation of 8% powdered-ESM (pESM) upregulated the expression of growth factors, including transforming growth factor β1, platelet-derived growth factor-β and connective tissue growth factor, and suppressed skin thinning.
Project description:Development of epidermis includes a complicated program of keratinocyte differentiation. Here we study a new membrane LIM-domain containing Zn-finger protein ZNF185 which is expressed in upper layers of human skin and is up-regulated during keratinocyte differentiation in vitro. Interestingly, depletion of ZNF185 causes delay of keratinocyte differentiation with decreased levels of FLG, LOR, LCEs expression.
Project description:Skin aging is one of the hallmarks of the aging process that causes physiological and morphological changes. Recently, several nutritional studies were conducted to delay or suppress the aging process. This study investigated whether nutritional supplementation of the eggshell membrane (ESM) has a beneficial effect on maintaining skin health and improving the skin aging process in vitro using neonatal normal human epidermal keratinocytes (NHEK-Neo) and in vivo using interleukin-10 knockout (IL-10 KO) mice. In NHEK-Neo cells, 1 mg/mL of enzymatically hydrolyzed ESM (eESM) upregulated the expression of keratinocyte differentiation markers, including keratin 1, filaggrin and involucrin, and changed the keratinocyte morphology. In IL-10 KO mice, oral supplementation of 8% powdered-ESM (pESM) upregulated the expression of growth factors, including transforming growth factor β1, platelet-derived growth factor-β and connective tissue growth factor, and suppressed skin thinning. Furthermore, voltage-gated calcium channel, transient receptor potential cation channel subfamily V members were upregulated by eESM treatment in NHEK-Neo cells and pESM supplementation in IL-10 KO mice. Collectively, these data suggest that ESM has an important role in improving skin health and aging, possibly via upregulating calcium signaling.
Project description:Cell density affects keratinocyte behaviors and gene expression. Here, We examines the differential expressed genes regulated by cell density. We performed RNA-seq analysis to compare HaCaT cells cultured under high- or low0density conditions. The Gene Ontology Biological Process terms enriched among differential expressed genes through DESeq2 included cell adhesion and keratinocyte differentiation. Our data provides the understanding of keratinocyte behavior regulated by cell density.