Project description:Influenza infection is a worldwide health and financial burden posing a significant risk to the immune-compromised, obese, diabetic, elderly, and pediatric populations. We identified increases in glucose metabolism in the lungs of pediatric patients infected with respiratory pathogens. Using quantitative mass spectrometry we found metabolic changes occurring after influenza infection in primary human respiratory cells, and validated infection associate increases in c-Myc, glycolysis, and glutaminolysis. We confirmed these findings with a metabolic drug screen and high throughput titering that identified the PI3K/mTOR inhibitor BEZ235 as a regulator of infectious virus production. BEZ235 treatment ablated the transient induction of c-Myc, restored PI3K/mTOR pathway homeostasis measured by 4E-BP1 and p85 phosphorylation, and reversed infection-induced changes in glucose and glutamine metabolism. Importantly, BEZ235 reduced infectious progeny but had no effect on viral entry or the early stages of viral replication. In a lethal infection model, BEZ235 significantly increased survival while reducing viral titer and respiratory distress. Here we show metabolic reprogramming of host cells by influenza virus exposes targets for therapeutic intervention.
2017-05-24 | PXD006263 | Pride
Project description:Complete Genome Sequences of Paired Isogenic Burkholderia pseudomallei Isolated from a Thai Pediatric Patient with Urinary Tract Infection
Project description:The encapsulated yeast Cryptococcus neoformans can cause a fatal meningoencephalitis in immunocompromised patients. C. neoformans infection is acquired through the respiratory tract, but the cellular and molecular mechanisms of the pulmonary innate immune response are still not well defined. To investigate the response of CCR2+ inflammatory monocytes to C. neoformans, we compared the transcriptomes of CCR2+ inflammatory monocytes from the lungs of naïve versus infected mice.
Project description:The respiratory epithelium comprises polarized cells at the interface between the environment and airway tissues. Polarized apical and basolateral protein secretions are a feature of airway epithelium homeostasis. Human respiratory syncytial virus (hRSV) is a major human pathogen that primarily targets the respiratory epithelium. However, the consequences of hRSV infection on epithelium secretome polarity and content remain poorly understood. To investigate the hRSV-associated apical and basolateral secretomes, a proteomics approach was combined with an ex-vivo pediatric airway epithelial model (HAE) of hRSV infection. Following infection, a skewing of apical/basolateral abundance ratios was identified for several individual proteins. Novel modulators of neutrophil and lymphocyte activation (CXCL6, CSF3, SECTM1 or CXCL16), and antiviral proteins (BST2 or CEACAM1) were specifically detected upon infection. Importantly, CXCL6, CXCL16, CSF3 were also detected in nasopharyngeal aspirates (NPA) from hRSV-infected infants but not healthy controls. Furthermore, the antiviral activity of CEACAM1 against RSV was confirmed in vitro using BEAS-2B cells. hRSV infection disrupted the polarity of the pediatric respiratory epithelial secretome and was associated with immune modulating (CXCL6, CXCL16, CSF3) and antiviral (CEACAM1) proteins never linked with this virus before. This study, therefore, provides novel insights into RSV pathogenesis and endogenous antiviral responses in pediatric airway epithelium
2020-02-25 | PXD013661 | Pride
Project description:Genome sequences of two Klebsiella aerogenes strain isolated from patients with urinary tract infection in Uganda
Project description:Early diagnosis of acute community-acquired pneumonia (CAP) is important in patient triage and treatment decisions. To identify biomarkers that distinguish patients with CAP from non-CAP controls, we conducted an untargeted global metabolome analysis for plasma samples from142 patients with CAP (CAP cases) and 97 without CAP (non-CAP controls). Thirteen lipid metabolites could discriminate between CAP cases and non-CAP controls with area-under-the-receiver-operating-characteristic curve of > 8 (P ≤ 10-9). The levels of glycosphingolipids, sphingomyelins, lysophosphatidylcholines and L-palmitoylcarnitine were higher, while the levels of lysophosphatidylethanolamines were lower in the CAP cases than those in non-CAP controls. All 13 metabolites could distinguish CAP cases from the non-infection, extrapulmonary infection and non-CAP respiratory tract infection subgroups. The levels of trihexosylceramide (d18:1/16:0) were higher, while the levels of lysophosphatidylethanolamines were lower, in the fatal than those of non-fatal CAP cases. Our findings suggest that lipid metabolites are potential diagnostic and prognostic biomarkers for CAP.
2016-08-11 | MTBLS354 | MetaboLights
Project description:Complete Genome Sequences of SARS-CoV-2 isolated from Egyptian Patients
Project description:A pressing clinical challenge is identifying the etiologic basis of acute respiratory illness. Without reliable diagnostics, the uncertainty associated with this clinical entity leads to a significant, inappropriate use of antibacterials. Use of host peripheral blood gene expression data to classify individuals with bacterial infection, viral infection, or non-infection represents a complementary diagnostic approach. Patients with respiratory tract infection along with ill, non-infected controls were enrolled through the emergency department or undergraduate student health services. Whole blood was obtained to generate gene expression profiles. These profiles were then used to generate signatures of bacterial acute respiratory infection, viral acute respiratory infection, and non-infectious illness. 273 subjects were ascertained for this analysis. This included 88 patients with non-infectious illness, 115 with viral acute respiratory infection, and 70 with bacterial acute respiratory infection. Samples were obtained at the time of enrollment, which was at initial clinical presentation. Total RNA was extracted from human blood using the PAXgene Blood RNA Kit. Microarray data were generated using the GeneChip Human Genome U133A 2.0 Array. Microarrays were generated in two microarray batches with seven overlapping samples giving rise to 280 total microarray experiments.
Project description:CF patients suffer from chronic and recurrent respiratory tract infections which eventually lead to lung failure followed by death. Pseudomonas aeruginosa is one of the major pathogens for CF patients and is the principal cause of mortality and morbidity in CF patients. Once it gets adapted, P. aeruginosa can persist for several decades in the respiratory tracts of CF patients, overcoming host defense mechanisms as well as intensive antibiotic therapies. P. aeruginosa CF strains isolated from different infection stage were selected for RNA extraction and hybridization on Affymetrix microarrays. Two batch of P. aeruginosa CF isolates are chosen : 1) isolates from a group of patients since 1973-2008 as described in ref (PMID: 21518885); 2) isolates from a group of newly infected children as described in ref (PMID: 20406284).