Project description:Background Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization). Results Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. Conclusions The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than nuclear encoded genes in robust corals. Accordingly, this needs to be taken into account when using mitochondrial markers for scleractinian phylogenies.
Project description:Similar to many marine invertebrates, scleractinian corals experience a dramatic morphological transformation, as well as a habitat switch, upon settlement and metamorphosis. At this time, planula larvae transform from non-calcifying, demersal, motile organisms into sessile, calcifying, benthic juvenile polyps. We performed a gene expression microarray analysis between planulae, aposymbiotic primary polyps, and symbiotic adult tissue to elucidate the molecular mechanisms underlying coral metamorphosis and early stages of calcification in the Robust/Short clade scleractinian coral Montastraea faveolata. Among the annotated genes, the most abundant upregulated transcripts in the planula stage are involved in protein synthesis, chromatin assembly and mitochondrial metabolism; the polyp stage, morphogenesis, protein catabolism and organic matrix synthesis; and the adult stage, sexual reproduction, stress response and symbiosis. Additionally, our results indicate that metamorphosis in M. faveolata planulae is likely regulated by: 1) a mechanism that resembles that described for hydrozoan cnidarians involving the neuropeptide LWamide; and 2) conserved cell adhesion and apoptosis mechanisms. Our results also suggest that calicoblast differentiation pathways may be regulated by transforming growth factors from the BMP family and Notch signalling pathway. We also present evidence showing that the planula and adult transcriptomes are more similar to each other than to the polyp trancriptome. Lastly, our results point to a large number of uncharacterized adult coral-specific genes likely involved in coral-specific functions such as symbiosis and calcification.
Project description:Increasing seawater’s calcium concentration has shown to increase reef building (scleractinian) coral’s calcification rates. In this way the expression of the genes that are associated with the calcification process also altered and, thus can be identified. Needless to say that the overall gene repertoire that participate in the coral calcification process and its molecular mechanisms have not yet been revealed, although sporadic genes that are related to the process have been discovered and investigated. In this study, nubbins of the Red Sea scleractinian coral, Stylophora pistillata were treated with increased calcium concentrations seawater (addition of 100 gm/L) and the genes that have been up-regulated were compared to the genes expression profile of corals with natural seawater calcium concentration. Measurements of AT were taken at mid-day (11:00) and in nighttime (23:00), to record the calcification rates of coral individuals under normal and increased calcium seawater concentrations. In order to reveal the gene involved in the calcification process, S. pistillata fragments of normal and of increased calcium concentrations were sampled for microarray RNA transcriptional profiling at two time-points (mid-day and nighttime).Results of this study have revealed that Smad genes may play a role in the coral skeletal growth apparatus. This study show that the calcification molecular mechanism is conserved Among identified genes are large group of genes that are characterized in the TGF-b/BMP signal transduction pathways which have been revealed in other organisms to participate in bone and cartilage tissue development molecular processes.
2017-06-29 | GSE87159 | GEO
Project description:Nanopore-based RNA sequencing of scleractinian coral Pocillopora damicornis
Project description:Short title: Coral Meta-Transcriptomics Reveal Pollutant Stress Background: Corals represent symbiotic meta-organisms that require harmonization among the coral animal, photosynthetic zooxanthellae and associated microbes to survive environmental stresses. We investigated integrated-responses among coral and zooxanthellae in the scleractinian coral Acropora formosa in response to an emerging marine pollutant, the munitions constituent, 1,3,5-trinitro-1,3,5 triazine (RDX; 5 day exposures to 0 (control), 0.5, 0.9, 1.8, 3.7, and 7.2 mg/L, measured in seawater). Results: RDX accumulated readily in coral soft tissues with bioconcentration factors ranging from 1.1 to 1.5). Next-generation sequencing of a normalized meta-transcriptomic library developed for the eukaryotic components of the A. formosa coral holobiont was leveraged to conduct microarray-based global transcript expression analysis of integrated coral / zooxanthellae responses to the RDX exposure. Total differentially expressed transcripts (DET) increased with increasing RDX exposure concentrations as did the proportion of zooxanthellae DET relative to the coral animal. Transcriptional responses in the coral demonstrated higher sensitivity to RDX compared to zooxanthellae where increased expression of gene transcripts coding xenobiotic detoxification mechanisms (ie. cytochrome P450 and UDP glucuronosyltransferase 2) were initiated at the lowest exposure concentration. Increased expression of these detoxification mechanisms was sustained at higher RDX concentrations as well as production of a physical barrier to exposure through a 40% increase in mucocyte density at the maximum RDX exposure. At and above the 1.8 mg/L exposure concentration, DET coding for genes involved in central energy metabolism, including photosynthesis, glycolysis and electron-transport functions, were decreased in zooxanthellae although preliminary data indicated that zooxanthellae densities were not affected. In contrast, significantly increased transcript expression for genes involved in cellular energy production including glycolysis and electron-transport pathways was observed in the coral animal. Conclusions: Transcriptional network analysis for central energy metabolism demonstrated highly correlated responses to RDX among the coral animal and zooxanthellae indicative of potential compensatory responses to lost photosynthetic potential within the holobiont. These observations underscore the potential for complex integrated responses to RDX exposure among species comprising the coral holobiont and highlight the need to understand holobiont-species interactions to accurately assess pollutant impacts.
Project description:Coral disease is one of the major causes of reef degradation and therefore of concern to management and conservation efforts. Dark Spot Syndrome (DSS) was described in the early 1990’s as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease, since they can also be caused by physical injury in some species. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two geographic locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies with normal pigmentation and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip™ G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, however the amplicon pools were overwhelmed by coral 18S rRNA genes from S. siderea. Unlike a similar study on a white-plague-like disease, S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the healthy scleractinian coral S. siderea. 17 samples, coral tissue punches from healthy and also from dark-spot-affected Siderastrea Siderea coral in the Virgin Islands and the Dry Tortugas National Parks was collected for comparison of associated bacterial communities
Project description:Stony corals generate their calcium carbonate exoskeleton in a highly controlled biomineralization process mediated by a variety of macromolecules including proteins. Fully identifying and classifying these proteins is crucial to understanding their role in exoskeleton formation, yet no optimal method to extract and isolate and characterize coral skeletal proteins has been established and their complete composition remains obscure. Here, we tested four skeletal protein extraction protocols using acetone precipitation and ultrafiltration dialysis filters to present a comprehensive scleractinian coral skeletal proteome. We identified a total of 60 proteins in the coral skeleton, 44 of which were not present in previously published stony coral skeletal proteomes. Extracted protein treatment protocols carried out in this study revealed that there is no “one optimal method” and each protocol revealed a unique set of method-exclusive proteins. To better understand the general mechanism of skeletal protein transportation, we further examined the proteins’ gene ontology, transmembrane domains, and signal peptides. We found that transmembrane domain proteins and signal peptide secretion pathways, by themselves, could not explain the transportation of proteins to the skeleton . We therefore propose that proteins are transported to the skeletal via vesicles and possibly non-traditional secretion pathways.
Project description:Scleractinian corals are the major builders of the complex structural framework of coral reefs. They live in tropical waters around the globe where they are frequently exposed to potentially harmful ultraviolet radiation (UVR). Coral eggs and early embryonic stages are thought to be the most sensitive life stages of corals to UVR given that they are highly buoyant and remain near the sea surface for prolonged periods of time. Here we analyzed gene expression changes in different larval stages of the Caribbean coral Montastraea faveolata to natural levels of UVR using high-density cDNA microarrays (10,930 clones). We found that larvae exhibit low sensitivity to natural levels of UVR during most time points analyzed as reflected by comparatively few transcriptomic changes in response to UVR. However, we identified a time window of high UVR sensitivity that coincides with the motile planula stage and the onset of larval competence. These processes have been shown to be affected upon UVR exposure, and the transcriptional changes we identified explain these observations well. Our analysis of differentially expressed genes indicates that UVR induces a stress response and affects the expression of neurogenesis-related genes that can be linked to swimming and settlement behavior at later stages. Taken together, our study provides further data to the impact of natural levels of UVR on coral larvae. Furthermore, our results might allow a better prediction of settlement and recruitment rates after coral spawning events based on UVR climate data.
Project description:Coral disease is one of the major causes of reef degradation and therefore of concern to management and conservation efforts. Dark Spot Syndrome (DSS) was described in the early 1990’s as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease, since they can also be caused by physical injury in some species. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two geographic locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies with normal pigmentation and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip™ G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, however the amplicon pools were overwhelmed by coral 18S rRNA genes from S. siderea. Unlike a similar study on a white-plague-like disease, S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the healthy scleractinian coral S. siderea.
2014-09-30 | GSE60622 | GEO
Project description:Mesophotic scleractinian coral genomes and RNAseq data