Project description:M. micrantha has caused huge ecological damage and economic losses worldwide due to its rapid growth and serious invasion. However, the underlying molecular mechanisms of its rapid growth and environmental adaption remain unclear. Here, we performed transcriptome and small RNA sequencing with five tissues of M. micrantha to dissect miRNA-mediated regulation in M. micrantha. WGCNA and GO enrichment analysis of transcriptome identified the gene association patterns and potential key regulatory genes for plant growth in each tissue. The genes highly correlated with leaf and stem tissues were mainly involved in the chlorophyll synthesis, response to auxin, the CAM pathway and other photosynthesis-related processes, which promoted the fast growth of M. micrantha. Importantly, we identified 350 conserved and 192 novel miRNAs, many of which displayed differential expression patterns among tissues. PsRNA target prediction analysis uncovered target genes of both conserved and novel miRNAs, including GRFs and TCPs, which were essential for plant growth and development. Further analysis revealed that miRNAs contributed to the regulation of tissue-specific gene expression in M. micrantha, such as mmi-miR396 and mmi-miR319. Taken together, our study uncovered the miRNA-mRNA regulatory networks and the potential vital roles of miRNAs in modulating the rapid growth of M. micrantha.
Project description:M. micrantha has caused huge ecological damage and economic losses worldwide due to its rapid growth and serious invasion. However, the underlying molecular mechanisms of its rapid growth and environmental adaption remain unclear. Here, we performed transcriptome and small RNA sequencing with five tissues of M. micrantha to dissect miRNA-mediated regulation in M. micrantha. WGCNA and GO enrichment analysis of transcriptome identified the gene association patterns and potential key regulatory genes for plant growth in each tissue. The genes highly correlated with leaf and stem tissues were mainly involved in the chlorophyll synthesis, response to auxin, the CAM pathway and other photosynthesis-related processes, which promoted the fast growth of M. micrantha. Importantly, we identified 350 conserved and 192 novel miRNAs, many of which displayed differential expression patterns among tissues. PsRNA target prediction analysis uncovered target genes of both conserved and novel miRNAs, including GRFs and TCPs, which were essential for plant growth and development. Further analysis revealed that miRNAs contributed to the regulation of tissue-specific gene expression in M. micrantha, such as mmi-miR396 and mmi-miR319. Taken together, our study uncovered the miRNA-mRNA regulatory networks and the potential vital roles of miRNAs in modulating the rapid growth of M. micrantha.
Project description:The coordination of chloroplast and nuclear genome status are critical for plant cell function, but the mechanism remain largely unclear. In this study, we report that Arabidopsis thaliana CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in both the chloroplast and the nucleus.
2022-12-13 | GSE220489 | GEO
Project description:The complete chloroplast genome sequence of Heuchera micrantha Douglas ex Lindl.(Saxifragaceae)
Project description:The coordination of chloroplast and nuclear genome status are critical for plant cell function, but the mechanism remain largely unclear. In this study, we report that Arabidopsis thaliana CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in both the chloroplast and the nucleus.
Project description:The regulator for chloroplast biogenesis (rcb) mutant was identified as a mutant defective in phytochrome-mediated chloroplast biogenesis. The rcb mutant has long hypocotyl and albino phenotypes. RCB initiates chloroplast biogenesis in the nucleus by promoting the degradation of the master repressors for chloroplast biogenesis, the PIFs (Phytochrome Interacting Factors). To understand how RCB regulates the expression of PIF-regulated genes, we performed genome-wide expression analysis of RCB-dependent genes using a rcb-10 null allele.
Project description:Deep sequencing provided evidence that a novel subset of small RNAs were derived from the chloroplast genome of Chinese cabbage (Brassica rapa) and Arabidopsis (Ler). The chloroplast small RNAs (csRNAs) include those derived from mRNA, rRNA, tRNA and intergenic RNA. The rRNA-derived csRNA were preferentially located at the 3â-ends of the rRNAs, while the tRNA-derived csRNAs were mainly located at 5â-termini of the tRNAs. After heat treatment, the abundance of csRNAs decreased in chinese cabbage seedlings, except those of 24 nt in length. The novel heat-responsive csRNAs and their locations in the chloroplast were verified by Northern blotting. The regulation of some csRNAs to the putative target genes were identified by real-time PCR. Our results indicated that high temperature regulated the production of some csRNAs, which may have potential roles in transcriptional or post-transcriptional regulation, and affected putative target genes expression in chloroplast.