Project description:The global transcriptional profile of novel T7-like Pseudomonas aeruginosa phage LUZ100 was obtained using the long read RNA sequencing technique ONT-cappable-seq. Using this approach we obtained a comprehensive genome-wide map of viral transcription start sites, terminators and transcription units and gained new insights in the molecular mechanisms of transcriptional regulation of T7-like temperate phages.
Project description:The phage protein gp70.1 encoded by Pseudomonas aerugonosa phage PaP3 was toxic to both P. aerugonosa and E. coli, microarry analysis was used to investigate the effects of gp70.1 on P. aerugonosa with three periods of bacterial growth.
Project description:The global transcriptional profile of Pseudomonas chlororaphis infecting phage 201f2-1 was obtained using the long-read RNA sequencing technique ONT-cappable-seq. this resulted in a comprehensive genome-wide map of viral transcription start and termination sites. In addition, we were able to identify different transcription units and gained new insights in the molecular mechanisms of of transcriptional regulation of members of the Phikzvirus.
Project description:Pseudomonas syringae pv. phaseolicola (Pph) is a significant bacterial pathogen of agricultural crops, and phage Φ6 and other members of the dsRNA virus family Cystoviridae undergo lytic (virulent) infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage Φ6 as a model system in evolutionary biology, Pph resistance to phage Φ6 remains poorly characterized. To investigate differences between phage Φ6 resistant Pseudomonas syringae pathovar phaseolicola strains, we performed expression analysis of super and non piliated strains of Pseudomonas syringae to determine the genetic cause of resistance to viral infection.
Project description:Whole-genome sequencing is an important way to understand the genetic information, gene function, biological characteristics, and living mechanisms of organisms. There is no difficulty to have mega-level genomes sequenced at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. The shotgun sequencing method failed to dissect this genome. After insisting for 10 years and going over 3 generations of sequencing techniques, we successfully dissected the PaP1 genome with 91,715 bp in length. Single-molecule sequencing revealed that this genome contains lots of modified bases, including 51 N6-methyladenines (m6A) and 152 N4-methylcytosines (m4C). At the same time, further investigations revealed a novel immune mechanism of bacteria, by which the host bacteria can recognize and repel the modified bases containing inserts in large scale, and this led to the failure of the shotgun method in PaP1 genome sequencing. Strategy of resolving this problem is use of non-library dependent sequencing techniques or use of the nfi- mutant of E. coli DH5M-NM-1 as the host bacteria to construct the shotgun library. In conclusion, we unlock the mystery of phage PaP1 genome hard to be sequenced, and discover a new mechanism of bacterial immunity in present study. Methylation profiling of Pseudomonas aeruginosa phage PaP1 using kinetic data generated by single-molecule, real-time (SMRT) sequencing on the PacBio RS.
Project description:Differential RNA-seq (dRNA-seq) was performed on Pseudomonas aeruginosa alone or shortly after iinfection with the jumbo phage phiKZ