Project description:Aeolian soil erosion, exacerbated by anthropogenic perturbations, has become one of the most alarming processes of land degradation and desertification. By contrast, dust deposition might confer a potential fertilization effect. To examine how they affect topsoil microbial community, we conducted a study GeoChip techniques in a semiarid grassland of Inner Mongolia, China. We found that microbial communities were significantly (P<0.039) altered and most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or remained unaltered in relative abundance by both erosion and deposition, which might be attributed to acceleration of organic matter mineralization by the breakdown of aggregates during dust transport and deposition. As a result, there were strong correlations between microbial carbon and nitrogen cycling genes. amyA genes encoding alpha-amylases were significantly (P=0.01) increased by soil deposition, reflecting changes of carbon profiles. Consistently, plant abundance, total nitrogen and total organic carbon were correlated with functional gene composition, revealing the importance of environmental nutrients to soil microbial function potentials. Collectively, our results identified microbial indicator species and functional genes of aeolian soil transfer, and demonstrated that functional genes had higher susceptibility to environmental nutrients than taxonomy. Given the ecological importance of aeolian soil transfer, knowledge gained here are crucial for assessing microbe-mediated nutrient cyclings and human health hazard. The experimental sites comprised of three treatments of control, soil erosion and deposition, with 5 replicates of each treatment.
Project description:Aeolian soil erosion, exacerbated by anthropogenic perturbations, has become one of the most alarming processes of land degradation and desertification. By contrast, dust deposition might confer a potential fertilization effect. To examine how they affect topsoil microbial community, we conducted a study GeoChip techniques in a semiarid grassland of Inner Mongolia, China. We found that microbial communities were significantly (P<0.039) altered and most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or remained unaltered in relative abundance by both erosion and deposition, which might be attributed to acceleration of organic matter mineralization by the breakdown of aggregates during dust transport and deposition. As a result, there were strong correlations between microbial carbon and nitrogen cycling genes. amyA genes encoding alpha-amylases were significantly (P=0.01) increased by soil deposition, reflecting changes of carbon profiles. Consistently, plant abundance, total nitrogen and total organic carbon were correlated with functional gene composition, revealing the importance of environmental nutrients to soil microbial function potentials. Collectively, our results identified microbial indicator species and functional genes of aeolian soil transfer, and demonstrated that functional genes had higher susceptibility to environmental nutrients than taxonomy. Given the ecological importance of aeolian soil transfer, knowledge gained here are crucial for assessing microbe-mediated nutrient cyclings and human health hazard.
Project description:Pattern-triggered immunity (PTI) is a central component of plant immunity. Activation of PTI relies on the recognition of microbe-derived structures, termed patterns, through plant encoded surface-resident pattern recognition receptors (PRRs). We have identified proteobacterial translation initiation factor 1 (IF1) as an immunogenic pattern that triggers PTI in Arabidopsis thaliana and some related Brassicaceae species.
2022-03-03 | PXD031124 | Pride
Project description:functional genes related to nitrogen cycle
Project description:Arbuscular mycorrhizal (AM) fungi contribute to plant nutrient uptake in systems managed with reduced fertilizer inputs such as organic agriculture and natural ecosystems by extending the effective size of the rhizosphere and delivering mineral. Connecting the molecular study of the AM symbiosis with agriculturally- and ecologically-relevant field environments remains a challenge and is a largely unexplored research topic. This study utilized a cross-disciplinary approach to examine the transcriptional, metabolic, and physiological responses of tomato (Solanum lycopersicum) AM roots to a localized patch of nitrogen (N). A wild-type mycorrhizal tomato and a closely-related nonmycorrhizal mutant were grown at an organic farm in soil that contained an active AM extraradical hyphal network and soil microbe community. The majority of genes regulated by upon enrichment of nitrogen were similarly expressed in mycorrhizal and nonmycorrhizal roots, suggesting that the primary response to an enriched N patch is mediated by mycorrhiza-independent root processes. However where inorganic N concentrations in the soil were low, differential regulation of key tomato N transport and assimilation genes indicate a transcriptome shift towards mycorrhiza-mediated N uptake over direct root supplied N. Furthermore, two novel mycorrhizal-specific tomato ammonium transporters were also found to be regulated under low N conditions. A conceptual model is presented integrating the transcriptome response to low N and highlighting the mycorrhizal-specific ammonium transporters. These results enhance our understanding of the role of the AM symbiosis in sensing and response to an enriched N patch, and demonstrate that transcriptome analyses of complex plant-microbe-soil interactions provide a global snapshot of biological processes relevant to soil processes in organic agriculture. 30 samples were analyzed. There were 2 genotypes (wildtype and mutant) and 3 treatments (two N treatments and a water control) for a total of 6 groups. Each group had 5 biological replicates.
Project description:Polyamines, such as putrescine and spermidine, are aliphatic organic compounds with multiple amino groups. They are found ubiquitously in marine systems. However, compared with the extensive studies on the concentration and fate of other dissolved organic nitrogen compounds in seawater, such as dissolved free amino acids (DFAA), investigations of bacterially-mediated polyamine transformations have been rare. Bioinformatic analysis identified genes encoding polyamine transporters in 74 of 109 marine bacterial genomes surveyed, a surprising frequency for a class of organic nitrogen compounds not generally recognized as an important source of carbon and nitrogen for marine bacterioplankton. The genome sequence of marine model bacterium Silicibacter pomeroyi DSS-3 contains a number of genes putatively involved in polyamine use, including six four-gene ATP-binding cassette transport systems. In the present study, polyamine uptake and metabolism by S. pomeroyi was examined to confirm the role of putative polyamine-related genes, and to investigate how well current gene annotations reflect function. A comparative whole-genome microarray approach (Bürgmann et al., 2007) allowed us to identify key genes for transport and metabolism of spermidine in this bacterium, and specify candidate genes for in situ monitoring of polyamine transformations in marine bacterioplankton communities.
Project description:Although some mechanisms are known how plant growth beneficial bacteria help plants to grow under stressful conditions, we still know little how the metabolism of host plants and bacteria is coordinated during the establishment of functional interaction. In the present work, using single and dual transcriptomics, we studied the reprograming of metabolic and signaling pathways of Enterobacter sp. SA187 with Arabidopsis thaliana during the change from free-living to endophytic host-microbe interaction. We could identify major changes in primary and secondary metabolic pathways in both the host and bacteria upon interaction, with an important role of the sulfur metabolism and retrograde signaling in mediating plant resistance to salt stress. Also, we studied the effect of SA187 endogenous compounds and its role on sulfur metabolism and consequently salt tolerance. These data should help future research in the field of beneficial plant-microbe interactions for developing sophisticated strategies to improve agriculture of crops under adverse environmental conditions. transcriptome of Arabidopsis thaliana organs with beneficial microbe, beneficial microbe endogenous compound, and ethylene precursor
Project description:Root-microbe interaction and its specialized root nodule structures and functions are well studied. In contrast, leaf nodules harboring microbial endophytes in special glandular leaf structures have only recently gained increased interest as plant-microbe phyllosphere interactions. Here, we applied a comprehensive metabolomics platform in combination with natural product isolation and characterization to dissect leaf and leaf nodule metabolism and functions in <i>Ardisia crenata</i> (Primulaceae) and <i>Psychotria punctata</i> (Rubiaceae). The results indicate that abiotic stress resilience plays an important part within the leaf nodule symbiosis of both species. Both species showed metabolic signatures of enhanced nitrogen assimilation/dissimilation pattern and increased polyamine levels in nodules compared to leaf lamina tissue potentially involved in senescence processes and photosynthesis. Multiple links to cytokinin and REDOX-active pathways were found. Our results further demonstrate that secondary metabolite production by endophytes is a key feature of this symbiotic system. Multiple anhydromuropeptides (AhMP) and their derivatives were identified as highly characteristic biomarkers for nodulation within both species. A novel epicatechin derivative was structurally elucidated with NMR and shown to be enriched within the leaf nodules of <i>A. crenata</i>. This enrichment within nodulated tissues was also observed for catechin and other flavonoids indicating that flavonoid metabolism may play an important role for leaf nodule symbiosis of <i>A. crenata.</i> In contrast, pavettamine was only detected in <i>P. punctata</i> and showed no nodule specific enrichment but a developmental effect. Further natural products were detected, including three putative unknown depsipeptide structures in <i>A. crenata</i> leaf nodules. The analysis presents a first metabolomics reference data set for the intimate interaction of microbes and plants in leaf nodules, reveals novel metabolic processes of plant-microbe interaction as well as the potential of natural product discovery in these systems.
Project description:Arbuscular mycorrhizal (AM) fungi contribute to plant nutrient uptake in systems managed with reduced fertilizer inputs such as organic agriculture and natural ecosystems by extending the effective size of the rhizosphere and delivering mineral. Connecting the molecular study of the AM symbiosis with agriculturally- and ecologically-relevant field environments remains a challenge and is a largely unexplored research topic. This study utilized a cross-disciplinary approach to examine the transcriptional, metabolic, and physiological responses of tomato (Solanum lycopersicum) AM roots to a localized patch of nitrogen (N). A wild-type mycorrhizal tomato and a closely-related nonmycorrhizal mutant were grown at an organic farm in soil that contained an active AM extraradical hyphal network and soil microbe community. The majority of genes regulated by upon enrichment of nitrogen were similarly expressed in mycorrhizal and nonmycorrhizal roots, suggesting that the primary response to an enriched N patch is mediated by mycorrhiza-independent root processes. However where inorganic N concentrations in the soil were low, differential regulation of key tomato N transport and assimilation genes indicate a transcriptome shift towards mycorrhiza-mediated N uptake over direct root supplied N. Furthermore, two novel mycorrhizal-specific tomato ammonium transporters were also found to be regulated under low N conditions. A conceptual model is presented integrating the transcriptome response to low N and highlighting the mycorrhizal-specific ammonium transporters. These results enhance our understanding of the role of the AM symbiosis in sensing and response to an enriched N patch, and demonstrate that transcriptome analyses of complex plant-microbe-soil interactions provide a global snapshot of biological processes relevant to soil processes in organic agriculture.
Project description:Resendis-Antonio2007 - Genome-scale metabolic
network of Rhizobium etli (iOR363)
This model is described in the article:
Metabolic reconstruction and
modeling of nitrogen fixation in Rhizobium etli.
Resendis-Antonio O, Reed JL,
Encarnación S, Collado-Vides J, Palsson BØ.
PLoS Comput. Biol. 2007 Oct; 3(10):
1887-1895
Abstract:
Rhizobiaceas are bacteria that fix nitrogen during symbiosis
with plants. This symbiotic relationship is crucial for the
nitrogen cycle, and understanding symbiotic mechanisms is a
scientific challenge with direct applications in agronomy and
plant development. Rhizobium etli is a bacteria which provides
legumes with ammonia (among other chemical compounds), thereby
stimulating plant growth. A genome-scale approach, integrating
the biochemical information available for R. etli, constitutes
an important step toward understanding the symbiotic
relationship and its possible improvement. In this work we
present a genome-scale metabolic reconstruction (iOR363) for R.
etli CFN42, which includes 387 metabolic and transport
reactions across 26 metabolic pathways. This model was used to
analyze the physiological capabilities of R. etli during stages
of nitrogen fixation. To study the physiological capacities in
silico, an objective function was formulated to simulate
symbiotic nitrogen fixation. Flux balance analysis (FBA) was
performed, and the predicted active metabolic pathways agreed
qualitatively with experimental observations. In addition,
predictions for the effects of gene deletions during nitrogen
fixation in Rhizobia in silico also agreed with reported
experimental data. Overall, we present some evidence supporting
that FBA of the reconstructed metabolic network for R. etli
provides results that are in agreement with physiological
observations. Thus, as for other organisms, the reconstructed
genome-scale metabolic network provides an important framework
which allows us to compare model predictions with experimental
measurements and eventually generate hypotheses on ways to
improve nitrogen fixation.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180006.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.