Project description:Recent evidences have linked indole-3-acetic acid (I3A), a gut microbiota-derived metabolite from dietary tryptophan, with the resistance to liver diseases. However, data supporting I3A-mediated protection against nonalcoholic fatty liver disease (NAFLD) remain incomprehensive. In this study, we verified that I3A definitely alleviates dietary-induced metabolic impairments, particularly glucose dysmetabolism and liver steatosis. Importantly, we expand the understanding of I3A further to enhancing mitochondrial respiration complex (MRC) capacity by RNA-seq. We found that I3A restored the deficiency of MRC capacity in palmitic acid (PA)-induced HepG2 in vitro. These changes were associated with complex I and III expression and their activities. In addition, pre-treatment of I3A guard against the deficiency of not only the MRC capacity but also ATP production due to the advanced protection effect on the expression and activity of complex V. In conclusion, our findings uncover that I3A increased expression and activity of hepatic oxidative phosphorylation subunits, contributing to mitochondrial respiration improvement in NAFLD mice.
Project description:Nonalcoholic fatty liver disease (NAFLD) is associated with hepatic mitochondrial dysfunction characterized by reduced ATP synthesis. We applied the 2H2O-metabolic labeling approach to test the hypothesis that the reduced stability of oxidative phosphorylation proteins contributes to mitochondrial dysfunction in a diet-induced mouse model of NAFLD. A high fat diet containing cholesterol (a so-called Western diet (WD)) led to hepatic oxidative stress, steatosis, inflammation and mild fibrosis, all markers of NAFLD, in LDLR-/- mice. In addition, compared to controls, livers from NAFLD mice had reduced citrate synthase activity and ATP content, suggesting reduced mitochondrial oxidative capacity. Proteome dynamics analysis revealed that mitochondrial dysfunction is associated with reduced average half-lives of mitochondrial proteins in NAFLD mice (5.41±0.46 vs. 5.15±0.49 day, P<0.05). In particular, the WD reduced stability of oxidative phosphorylation subunits, including cytochrome c oxidase subunit 4 isoform 1 of complex III (5.9 ± 0.1 vs 3.4 ± 0.8 day), ATP synthase subunit α (6.3±0.4 vs. 5.5±0.4 day) and ATP synthase F(0) complex subunit B1 of complex V (8.5±0.6 vs. 6.5±0.2 day) (P<0.05). These changes were associated with impaired complex III and F0F1-ATP synthase activities, suggesting that increased degradation of mitochondrial proteins contributed to hepatic mitochondrial dysfunction in NAFLD mice. Autophagy, but not proteasomal degradation, contributed to increased clearance of hepatic mitochondrial proteins in NAFLD mice. In conclusion, the proteome dynamics approach suggests that alterations in mitochondrial proteome dynamics is involved in hepatic mitochondrial dysfunction in NAFLD.
Project description:Hepatic steatosis is the result of an imbalance between nutrient delivery and metabolism in the liver. It is the first hallmark of Non-alcoholic fatty liver disease (NAFLD) and is characterized by the accumulation of excess lipids in the liver that can drive liver failure, inflammation, and cancer. Mitochondria control the fate and function of cells and compelling evidence implicates these multifunctional organelles in the appearance and progression of liver dysfunction, although it remains to be elucidated which specific mitochondrial functions are actually causally linked to NAFLD. Here, we identified Mitochondrial Fission Process 1 protein (MTFP1) as a key regulator of mitochondrial and metabolic activity in the liver. Deletion of Mtfp1 in hepatocytes is physiologically benign in mice yet leads to the upregulation of oxidative phosphorylation (OXPHOS) complexes and mitochondrial respiration, independently of mitochondrial biogenesis. Consequently, hepatocyte-specific knockout mice are protected against high fat diet-induced hepatic steatosis and metabolic dysregulation. Additionally, we find that deletion of Mtfp1 in liver mitochondria inhibits mitochondrial permeability transition pore opening in hepatocytes, conferring protection against apoptotic liver damage in vivo and ex vivo. Our work uncovers novel functions of MTFP1 in the liver, positioning this gene as an unexpected regulator of OXPHOS and a therapeutic candidate for NAFLD.
Project description:Hepatic steatosis is the result of an imbalance between nutrient delivery and metabolism in the liver. It is the first hallmark of Non-alcoholic fatty liver disease (NAFLD) and is characterized by the accumulation of excess lipids in the liver that can drive liver failure, inflammation, and cancer. Mitochondria control the fate and function of cells and compelling evidence implicates these multifunctional organelles in the appearance and progression of liver dysfunction, although it remains to be elucidated which specific mitochondrial functions are actually causally linked to NAFLD. In this study, we identified Mitochondrial Fission Process 1 protein (MTFP1) as a key regulator of mitochondrial and metabolic activity in the liver. Deletion of Mtfp1 in hepatocytes is physiologically benign in mice yet leads to the upregulation of oxidative phosphorylation (OXPHOS) complexes and mitochondrial respiration, independently of mitochondrial biogenesis. Consequently, hepatocyte-specific knockout mice are protected against high fat diet-induced hepatic steatosis and metabolic dysregulation. Additionally, we find that deletion of Mtfp1 in liver mitochondria inhibits mitochondrial permeability transition pore opening in hepatocytes, conferring protection against apoptotic liver damage in vivo and ex vivo. Our work uncovers novel functions of MTFP1 in the liver, positioning this gene as an unexpected regulator of OXPHOS and a therapeutic candidate for NAFLD.
Project description:Description
Mitochondrial respiration in mammalian cells not only generates ATP to meet their own energy needs but also couples with biosynthetic pathways to produce metabolites that can be exported to support neighboring cells. However, how defects in mitochondrial respiration influence these biosynthetic and exporting pathways remains poorly understood. In this study we used targeted-metabolomics to investigate how inhibition of mitochondrial respiration influences the intracellular and extracellular metabolome.
Project description:Obesity alters circulating levels of pituitary hormones that govern hepatic immune-metabolic homeostasis, and dysregulation of which leads to NAFLD. Here, using diet induced obese and IRE1PKO mice, we uncovered an blunted unfolded protein response (UPR) but elevated inflammatory signatures in pituitary glands of obese mice. Mechanistically, we demonstrated that the pituitary IRE1alpha-XBP1 UPR branch is essential for protecting against pituitary endocrine defects and NAFLD progression in obesity.
Project description:Obesity alters circulating levels of pituitary hormones that govern hepatic immune-metabolic homeostasis, and dysregulation of which leads to NAFLD. Here, using diet induced obese mouse, we uncovered an blunted unfolded protein response (UPR) but elevated inflammatory signatures in pituitary glands of obese mice. Mechanistically, we demonstrated that the pituitary IRE1alpha-XBP1 UPR branch is essential for protecting against pituitary endocrine defects and NAFLD progression in obesity.
Project description:Impaired mitochondrial oxidative phosphorylation (OXPHOS) in liver tissue has been hypothesised to contribute to the development of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease (NAFLD). It is unknown whether OXPHOS capacities in human visceral (VAT) and subcutaneous adipose tissue (SAT) associate with NAFLD severity and how hepatic OXPHOS responds to improvement in NAFLD. In biopsies sampled from 62 patients with obesity undergoing bariatric surgery and nine control subjects without obesity we demonstrate that OXPHOS is reduced in VAT and SAT while increased in the liver in patients with obesity when compared with control subjects without obesity, but this was independent of NAFLD severity. In repeat liver biopsy sampling in 21 patients with obesity 12 months after bariatric surgery we found increased hepatic OXPHOS capacity and mitochondrial DNA/nuclear DNA content compared with baseline. In this work we show that obesity has an opposing association with mitochondrial respiration in adipose- and liver tissue with no overall association with NAFLD severity, however, bariatric surgery increases hepatic OXPHOS and mitochondrial biogenesis.
Project description:Obesity alters circulating levels of pituitary hormones that govern hepatic immune-metabolic homeostasis, and dysregulation of which leads to NAFLD. Here, using diet induced obese mouse and IRE1PKO mice, we uncovered an blunted unfolded protein response (UPR) but elevated inflammatory signatures in pituitary glands of obese mice. Mechanistically, we demonstrated that the pituitary IRE1alpha-XBP1 UPR branch is essential for protecting against pituitary endocrine defects and NAFLD progression in obesity.