Project description:Bio-augmentation could be a promising strategy to improve processes for treatment and resource recovery from wastewater. In this study, the Gram-positive bacterium Bacillus subtilis was co-cultured with the microbial communities present in wastewater samples with high concentrations of nitrate or ammonium. Glucose supplementation (1%) was used to boost biomass growth in all wastewater samples. In anaerobic conditions, the indigenous microbial community bio-augmented with B. subtilis was able to rapidly remove nitrate from wastewater. In these conditions, B. subtilis overexpressed nitrogen assimilatory and respiratory genes including NasD, NasE, NarG, NarH, and NarI, which arguably accounted for the observed boost in denitrification. Next, we attempted to use the the ammonium- and nitrate-enriched wastewater samples bio-augmented with B. subtilis in the cathodic compartment of bioelectrochemical systems (BES) operated in anaerobic condition. B. subtilis only had low relative abundance in the microbial community, but bio-augmentation promoted the growth of Clostridium butyricum and C. beijerinckii, which became the dominant species. Both bio-augmentation with B. subtilis and electrical current from the cathode in the BES promoted butyrate production during fermentation of glucose. A concentration of 3.4 g/L butyrate was reached with a combination of cathodic current and bio-augmentation in ammonium-enriched wastewater. With nitrate-enriched wastewater, the BES effectively removed nitrate reaching 3.2 mg/L after 48 h. In addition, 3.9 g/L butyrate was produced. We propose that bio-augmentation of wastewater with B. subtilis in combination with bioelectrochemical processes could both boost denitrification in nitrate-containing wastewater and enable commercial production of butyrate from carbohydrate- containing wastewater, e.g. dairy industry discharges. These results suggest that B. subtilis bio-augmentation in our BES promotes simultaneous wastewater treatment and butyrate production.
Project description:Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using 15N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more by the higher organic matter addition, and the fraction of nitrogen loss attributed to anammox slightly reduced. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community as determined using a nirS microarray, indicating the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.
Project description:Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using 15N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more by the higher organic matter addition, and the fraction of nitrogen loss attributed to anammox slightly reduced. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community as determined using a nirS microarray, indicating the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches. Two color array (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5. Three replicate probes were printed for each archetype. Two replicate arrays were run on duplicate targets.
Project description:The ETS transcriptional repressor Yan functions as part of a developmental switch that in response to receptor tyrosine kinase signaling, transitions from a high-Yan to a low-Yan state to direct specification of a variety of cell fates. To date very few direct target genes have been identified, nor is it clear how their expression is buffered against developmental noise to prevent inappropriate oscillations between states. Following investigation of its genome-wide chromatin occupancy profile, we noticed a striking signature at developmentally important genes whereby Yan associates with chromatin in regions of high-peak density that span multiple kilobases which partially relies upon SAM-domain mediated self-association. We speculate that the high-density Yan occupancy signature may reveal a novel mechanism that buffers the expression of critical developmental regulators against intrinsic and environmental noise. The supplementary bed file contains Yan binding regions. Yan ChIP from staged Drosophila embryos
Project description:The ETS transcriptional repressor Yan functions as part of a developmental switch that in response to receptor tyrosine kinase signaling, transitions from a high-Yan to a low-Yan state to direct specification of a variety of cell fates. To date very few direct target genes have been identified, nor is it clear how their expression is buffered against developmental noise to prevent inappropriate oscillations between states. Following investigation of its genome-wide chromatin occupancy profile, we noticed a striking signature at developmentally important genes whereby Yan associates with chromatin in regions of high-peak density that span multiple kilobases which partially relies upon SAM-domain mediated self-association. We speculate that the high-density Yan occupancy signature may reveal a novel mechanism that buffers the expression of critical developmental regulators against intrinsic and environmental noise. The supplementary bed file contains Yan binding regions.
Project description:High-resolution genome-wide binding of Yan used to confirm the presence of high-density regions seen in ChIP-chip ChIP-Seq of Yan protein in stage 11 Drosophila embryos
Project description:These research areas concentrate on stress induced proteases in recombinant Escherichia coli, glycosylation heterogeneity due to bioprocess conditions produced in mammalian cells, and metabolic engineering of E. coli. The hypothesis of this project is that recombinant protein glycosylation is inefficient under normal bioreactor conditions since the additional glycosylation reactions necessary for the recombinant protein exceed the metabolic capacity of the cells. Normal bioreactor conditions have been optimized for cell growth, and sometimes for protein productivity. Only recently has it been accepted that optimal glycosylation may not occur under optimal growth or protein productivity conditions. Specific Aim: Determine the relationship between bioreactor conditions and glycosylation gene expression in NS0 cells.
Project description:Here, we successfully used NO as the direct electron acceptor for the enrichment of a microbial community in a continuous bioreactor. The enrichment culture, mainly comprised of two new organisms from the Sterolibacteriaceae family, grew on NO reduction to N2 and formate oxidation, with virtually no accumulation of N2O. The microbial growth kinetics of the enrichment culture as well as its affinity for different N-oxides were determined. In parallel, using metagenomics, metatranscriptomics, and metaproteomics, the biochemical reactions underlying the growth of these microorganisms on NO were investigated. This study demonstrates that microorganisms thrive and can be enriched on NO, and presents new opportunities to study microbial growth on this highly energetic and climate-active molecule that may have been pivotal in the evolution of aerobic respiration.