Project description:Enterobacter cloacae is a Gram-negative nosocomial pathogen of the ESKAPE (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter spp.) priority group with increasing multi-drug resistance via the acquisition of resistance plasmids. However, E. cloacae can also display forms of antibiotic refractoriness, such as heteroresistance and tolerance. Here, we report that E. cloacae displays transient heteroresistance to aminoglycosides, which is accompanied with the formation of small colony variants (SCVs) with increased minimum inhibitor concentration (MIC) of gentamicin and other aminoglycosides used in the clinic, but not other antibiotic classes. To explore the underlying mechanisms, we performed RNA sequencing of heteroresistant bacteria, which revealed global gene-expression changes and a signature of the CpxRA cell envelope stress response. Deletion of the cpxRA two-component system abrogated aminoglycoside heteroresistance and SCV formation, pointing to its indispensable role in these processes. The introduction of a constitutively active allele of cpxA led to high aminoglycoside MICs, consistent with cell envelope stress response driving these behaviours in E. cloacae. Cell envelope stress can be caused by environmental cues, including heavy metals. Indeed, bacterial exposure to copper increased gentamicin MIC in the wild-type, but not in the ΔcpxRA mutant. Moreover, copper exposure also elevated the gentamicin MICs of clinical isolates from bloodstream infections, suggesting that CpxRA- and copper-dependent aminoglycoside resistance is broadly conserved in E. cloacae strains. Altogether, we establish that E. cloacae relies on transcriptional reprogramming via the envelope stress response pathway for transient resistance to a major class of frontline antibiotic.
Project description:Background: Enterobacter cloacae complex (ECC) is a common opportunistic pathogen and is responsible for causing various infections in humans. Owing to its inducible chromosomal AmpC β-lactamase (AmpC), ECC is inherently resistant to the 1st- and 2nd- generation cephalosporins. However, whether β-lactams antibiotics enhance ECC resistance remains unclear. Results: In this study, we found that subinhibitory concentrations (SICs) of cefazolin (CFZ) and imipenem (IMP) can advance the expression of AmpC and enhance its resistance towards β-lactams through NagZ in Enterobacter cloacae (EC). Further, AmpC manifested a substantial upregulation in EC in response to SICs of CFZ and IMP. In nagZ knockout EC (ΔnagZ), the resistance to β-lactam antibiotics was rather weakened and the effect of CFZ and IMP on AmpC induction was completely abrogated. NagZ ectopic expression can rescue the induction effects of CFZ and IMP on AmpC and increase ΔnagZ resistance. More importantly, CFZ and IMP have the potential to induce the expression of AmpR's target genes in a NagZ-dependent manner. Conclusions: Our findings suggest that NagZ is a critical determinant for CFZ and IMP to promote AmpC expression and resistance and that CFZ and IMP should be used with caution since they may aggravate ECC resistance. At the same time, this study further improves our understanding of resistance mechanisms in ECC.
Project description:Recently, we have reported on a highly drug-resistant carbapenemase-producing isolate of Enterobacter cloacae (Nepal et al., Virulence. 2018; 9: 1377-1389). In the present study, we asked the question whether and, if so, how this isolate responds to a sub-inhibitory challenge with the antibiotic imipenem. To answer this question, we applied a SILAC proteomics approach that allowed the quantification of changes in the relative abundance of bacterial protein in response to imipenem. The results show that the investigated E. cloacae isolate mounts a highly specific response to counteract the detrimental effects of imipenem.
Project description:The ability of bacteria to sense and respond to mechanical forces has important implications for pathogens during the in vivo infection process, as they experience wide fluid shear fluctuations in the host. However, relatively little is known about how mechanical forces encountered in the infected host drive microbial pathogenesis. We previously demonstrated an inverse relationship between fluid shear-induced responses of classic gastrointestinal disease-causing Salmonella Typhimurium (x3339) and systemic multidrug resistant (MDR) S. Typhimurium (ST313 D23580) when the organisms were cultured under fluid shear forces like those in the intestinal tract and bloodstream. To advance our understanding of how incremental increases in physiological fluid shear impact D23580 pathogenesis phenotypes and transcriptomic responses, we applied dynamic bioreactor technology to introduce and quantify incremental increases in fluid shear during culture. Our data indicate that D23580 responds dynamically to a range of physiological fluid shear levels by altering pathogenesis-related phenotypes (stress responses, host cell colonization) and transcriptomic responses (including genes important for adherence and invasion). These phenotypic and molecular genetic changes directly correlated with incrementally increased fluid shear. This is the first demonstration that incremental changes in fluid shear alter stress responses and gene expression in any ST313 strain and offers new insight into how physiological fluid shear forces encountered by MDR bacteria in the infected host might impact their disease-causing ability in unexpected ways.