Project description:These data correspond to one SMRT cell sequencing run (performed on Sequel II, PacBio) of full length cDNAs from 3 pooled glioma stem cell line libraries. No tag was added to distinguish the 3 different samples
Project description:Deregulated gene expression is a hallmark of cancer, however most studies to date have analyzed short-read RNA-sequencing data with inherent limitations. Here, we combine PacBio long-read isoform sequencing (Iso-Seq) and Illumina paired-end short read RNA sequencing to comprehensively survey the transcriptome of gastric cancer (GC), a leading cause of global cancer mortality. We performed full-length transcriptome analysis across 10 GC cell lines covering four major GC molecular subtypes (chromosomal unstable, Epstein-Barr positive, genome stable and microsatellite unstable). We identify 60,239 non-redundant full-length transcripts, of which >66% are novel compared to current transcriptome databases. Novel isoforms are more likely to be cell-line and subtype specific, expressed at lower levels with larger number of exons, with longer isoform/coding sequence lengths. Most novel isoforms utilize an alternate first exon, and compared to other alternative splicing categories are expressed at higher levels and exhibit higher variability. Collectively, we observe alternate promoter usage in 25% of detected genes, with the majority (84.2%) of known/novel promoter pairs exhibiting potential changes in their coding sequences. Mapping these alternate promoters to TCGA GC samples, we identify several cancer-associated isoforms, including novel variants of oncogenes. Tumor-specific transcript isoforms tend to alter protein coding sequences to a larger extent than other isoforms. Analysis of outcome data suggests that novel isoforms may impart additional prognostic information. Our results provide a rich resource of full-length transcriptome data for deeper studies of GC and other gastrointestinal malignancies.
Project description:Rapidly increased studies by third-generation sequencing [Pacific Biosciences (Pacbio) and Oxford Nanopore Technologies (ONT)] have been used in all kinds of research areas. Among them, the plant full-length single-molecule transcriptome studies were most used by Pacbio while ONT was rarely used. Therefore, in this study, we developed ONT RNA-sequencing methods in plants. We performed a detailed evaluation of reads from Pacbio and Nanopore PCR cDNA (ONT Pc) sequencing in plants (Arabidopsis), including the characteristics of raw data and identification of transcripts. We aimed to provide a valuable reference for applications of ONT in plant transcriptome analysis.
Project description:We report FLAM-seq, a cDNA library preparation method coupled to PacBio single-molecule sequencing for profiling full-length mRNAs including their poly(A) tail.
Project description:The testis and epididymis tissues collected from 12-month-old adult BMI boars were carried out PacBio Iso-Seq sequencing and Illumina RNA-seq sequencing. The full-length isoforms, extensive alternative splicing events, lncRNAs, some genes and novel isoforms related to spermatogenesis were evaluated.
Project description:We used PacBio data to identify more reliable transcripts from hESC, based on which we can estimate gene/transcript abundance better from Illumina data. PacBio long reads and Illumina short reads were generated from the same hESC cell line H1. PacBio reads were error-corrected by Illumina reads to identify transcripts. rSeq is used to estimate gene/transcript abundance of the identified transcriptome.
Project description:We consturcted a full-length transcript reference of CD4SP and CD8SP T cells using TGS (PacBio) data. We then used SGS (Illumina) CD4SP and CD8SP data to quantify isoform expressions and study alternative splicing patterns against the full-length transcript reference between CD4SP and CD8SP cells.
Project description:We used bs-ATLAS-seq to comprehensively map the genomic location and assess the DNA methylation status of human full-length LINE-1 elements (L1). The approach is focused on the youngest family (L1HS), but it also catches a significant fraction of L1PA2 to L1PA8 elements. This was performed in a panel of 12 human primary or transformed cell lines (BJ, IMR90, MRC5, H1, K562, HCT116, HeLa S3, HepG2, MCF7, HEK-293, HEK-293T, 2102Ep).