Project description:RNA sequencing was carried out by ARK genomics, Edinburgh on an Illumina HiSeq platform to compare gene expression in Acinetobacter baumannii strain AYE and an adeRS deletion mutant in this strain.
Project description:RNA sequencing was carried out at BGI, Hong Kong on an Illumina HiSeq platform to compare gene expression in Acinetobacter baumannii strain S1 and an adeAB deletion mutant in this strain.
Project description:RNA sequencing was carried out at the University of Birmingham on an Illumina MiSeq platform to compare gene expression in Acinetobacter baumannii strain AYE and an adeB deletion mutant in this strain.
Project description:The experiment contains native Tn-seq data for Acinetobacter baumannii strain AB5075 with different genetic alterations. The strain was grown at 37 degrees in LB medium and genomic DNA was isolated. We then used PCR to select for DNA regions containing a junction between ISAba13 and chromosomal DNA. Libraries were then prepared using these DNA fragments.
Project description:A major reservoir for spread of the emerging pathogen Acinetobacter baumannii is hopsital surfaces, where bacteria persist in a desiccated state. To identify gene products influencing desiccation survival, a transposon sequencing (Tn-seq) screen was performed. Using this approach, we identified genes both positively and negatively impacting the desiccation tolerance of A. baumannii.
Project description:Acinetobacter baumannii is a major cause of nosocomial infections which can survive in different hospital environments and its multidrug-resistant capacity is major concern now-a-days. ppGpp dependent stringent response mediates reprogramming of gene expression with diverse function in many bacteria. A baumannii A1S_0579 gene is responsible for ppGpp production. Transcriptome analysis of early stationary phase cultures represents several differentially expressed genes in ppGpp deficient strain (∆A1S_0579). We found that the expression of csu operon, which is important in pili biosynthesis for early biofilm formation, was significantly reduced in the ppGpp-deficient strain. Our findings showed that ppGpp signaling plays critical role in biofilm formation, surface motility, adherence and virulence of A baumannii. This study is the first demonstration of the association between ppGpp and pathogenicity of A. baumannii.