Project description:This SuperSeries is composed of the following subset Series: GSE25297: Genome-wide gene expression comparison (primary central nervous system lymphoma (PCNSL) vs normal lymph node) GSE25298: Genomic aberrations in primary central nervous system lymphoma (PCNSL) Refer to individual Series
Project description:Primary central nervous system lymphoma(PCNSL) is a rare extra-nodal non-Hodgkin’s lymphoma and accounts for 3%-4% of central nervous system tumors. Recent studies have highlighted the importance of cerebrospinal fluid derived extracellular vesicles in PCNSL. Extracellular vesicles(EVs) are nanoscale vesicles with bilayer lipid membrane released by almost all cell types. EVs are present in body fluids, including urine, blood and CSF. Cerebrospinal fluid(CSF) is a colorless fluid that surrounds the brain and spinal cord and acts as lymph in the central nervous system. CSF-derived EVs contain proteins from neurons, oligodendrocytes, astrocytes and microglias. Studies of CSF EVs are mainly limited by the amount of EVs isolated from per milliliter of CSF and the volume of CSF acquired from one patient. Here, we provide a label-free quantitative phospho-proteome profiling of EVs separated from PCNSL and non-PCNSL CSF samples by an earlier introduced functional magnetic beads called EVTRAP together with highly sensitive timsTOF Pro.
Project description:Primary central nervous system (CNS) lymphoma (PCNSL) is a diffuse large B cell lymphoma (DLBCL) confined to the CNS. A genome-wide gene expression comparison between PCNSL and non-CNS DLBCL was performed, the latter consisting of both nodal and extranodal DLBCL (nDLBCL and enDLBCL), to identify a “CNS signature.” Keywords: disease state analysis
Project description:A genome-wide gene expression comparison between primary central nervous system lymphoma (PCNSL) and normal lymph node was performed to identify a differential exprssion and specific pathway. Experiment design: 7 PCNSL and 7 normal lymph node tissues were used for comparison.
Project description:To determine the overall tumor microenvironment (TME), characteristics, and transition mechanisms in primary central nervous system lymphoma (PCNSL), we performed spatial transcriptomics and matched the corresponding single-cell sequencing data of PCNSL patients. We found that tumor cells may achieve a “TME remodeling pattern” through an “immune pressure-sensing model”, in which they could choose to reshape the TME into a barrier environment or a cold environment according to the immune pressure. A key FKBP5+ tumor subgroup was found to be responsible for pushing tumors into the barrier environment, which provides a possible way to evaluate the stage of PCNSL. The specific mechanism of the TME remodeling pattern and the key molecules of the immune pressure-sensing model were identified through the spatial communication analysis. Finally, we discovered the spatial and temporal distributions and variation characteristics of immune checkpoint molecules and CAR-T target molecules in immunotherapy. These data clarified the TME remodeling pattern of PCNSL, provided a reference for its immunotherapy, and provided suggestions for the TME remodeling mechanism of other cancers.
Project description:A genome-wide gene expression comparison between primary central nervous system lymphoma (PCNSL) and normal lymph node was performed to identify a differential exprssion and specific pathway.