Project description:Plasticizers with estrogenic activity, such as bisphenol A (BPA), have been reported to have potential adverse health effects in humans, especially in fetal and infant stages. Due to mounting evidence and public pressure BPA is being phased out by the plastics manufacturing industry and is being replaced by other bisphenol variants in “BPA-free” products. We have compared estrogenic activity of 7 bisphenol analogues (BPA; bisphenol S, BPS; bisphenol F, BPF; bisphenol AP, BPAP; bisphenol AF, BPAF; bisphenol Z, BPZ; bisphenol B, BPB) in human breast cancer cell lines. We used microarrays to detail the alterations in gene expression profiles associated with MCF-7 cell line exposure to bisphenol A analogues
Project description:In recent decades, several types of anticancer drugs that inhibit cancer cell growth and cause cell death have been developed for chemotherapeutic application. However, these agents are usually associated with side effects resulting from nonspecific delivery, which may induce cytotoxicity in healthy cells. To reduce the nonspecific delivery issue, nanoparticles have been successfully used for the delivery of anticancer drugs to specific target sites. In this study, a functional polymeric lipid, PEG-GLFG-K(C16)2 (PEG-GLFG, polyethylene glycol-Gly-Leu-Phe-Gly-Lys(C16)2), was synthesized to enable controlled anticancer drug delivery using cathepsin B enzyme-responsive liposomes. The liposomes composed of PEG-GLFG/DOTAP (1,2-dioleoyl-3-trimethylammonium-propane (chloride salt))/DPPC (dipalmitoylphosphatidylcholine)/cholesterol were prepared and characterized at various ratios. The GLFG liposomes formed were stable liposomes and were degraded when acted upon by cathepsin B enzyme. Doxorubicin (Dox) loaded GLFG liposomes (GLFG/Dox) were observed to exert an effective anticancer effect on Hep G2 cells in vitro and inhibit cancer cell proliferation in a zebrafish model.
Project description:Arctigenin (ARG) has been previously reported to exert high biological activities including anti-inflammatory, antiviral and anticancer. In this study, the anti-tumor mechanism of ARG towards human hepatocellular carcinoma (HCC) was firstly investigated. We demonstrated that ARG could induce apoptosis in Hep G2 and SMMC7721 cells but not in normal hepatic cells, and its apoptotic effect on Hep G2 was stronger than that on SMMC7721. Furthermore, the following study showed that ARG treatment led to a loss in the mitochondrial out membrane potential, up-regulation of Bax, down-regulation of Bcl-2, a release of cytochrome c, caspase-9 and caspase-3 activation and a cleavage of poly (ADP-ribose) polymerase in both Hep G2 and SMMC7721 cells, suggesting ARG-induced apoptosis was associated with the mitochondria mediated pathway. Moreover, the activation of caspase-8 and the increased expression levels of Fas/FasL and TNF-? revealed that the Fas/FasL-related pathway was also involved in this process. Additionally, ARG induced apoptosis was accompanied by a deactivation of PI3K/p-Akt pathway, an accumulation of p53 protein and an inhibition of NF-?B nuclear translocation especially in Hep G2 cells, which might be the reason that Hep G2 was more sensitive than SMMC7721 cells to ARG treatment.
Project description:Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXRα) in the genistein induction of hSULT2A1. LXRs have been shown to induce expression of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXRα mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXRα binding to the hSULT2A1 promoter. These results suggest that hLXRα plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT.
Project description:Perfluorooctane sulfonate (PFOS) is one of the most lethal per- and poly-fluoroalkyl substances (PFAS). Generally, exposure effects are studied through case-controlled studies, cohort studies, or cell assays. Unfortunately, most studies involving two-dimensional cell cultures require cell lysis or fixation. For in vitro studies, fluorescence microscopy has been useful, but methods to simultaneously discern phototoxic effects during an experiment are limited. Here, we use hepatocarcinoma (Hep G2) cells to examine the redox mechanism of PFOS cytotoxicity in vitro, while using hyperspectral-assisted scanning electrochemical microscopy (SECM) to differentiate between PFOS and redox mediator induced stress. Specifically, we correlate an increase in the electrochemical response of ferrocenemethanol oxidation with an increase in intracellular reactive oxygen species. Corresponding hyperspectral images of redox indicative-fluorophores implicate superoxide in the cytotoxic redox mechanism.