Project description:Pistacia chinensis Bunge is known as dioecious, but we have found wild monoecious individuals. In order to screen the candidate genes which may influence the sex expression or floral phenotypic differences of P. chinensis, the inflorescence buds for different sex types associated with the sex differentiation were selected and tested for small RNA sequencing. Sex-specific differentially expressed small RNA were discovered, combined with real-time PCR data, the regulation patterns of various sex types were first revealed. Our study represents the first detailed analysis of small RNA sequencing, providing more clues for understanding the mechanism of sex determination on P. chinensis.
Project description:We reported the application of high-throughput sequencing technology (RNA-seq) for the transcriptome of T. chinensis cells and the transcriptional alternatives of that responded to MeJA were comprehensively and quantitatively assessed with high-throughput sequencing technology (RNA-seq). By sequencing > 29 million reads (200 bp in length) of cDNA from each of MeJA-treated T. chinensis cells at 16 h (T16) and the control (T0), we identified 46,581 transcripts and uncovered 13,469 genes differentially expressed in response to MeJA. We provided functional clues for understanding the regulation mechanisms of MeJA-mediated defense responses and taxol biosynthesis.
2012-11-16 | GSE28539 | GEO
Project description:Development of the petaloid bracts of a paleoherb species, Saururus chinensis
| PRJNA717905 | ENA
Project description:Transcriptome data of Orchidantha chinensis leaf
Project description:Manassantin A is a natural product that has been isolated from the perennial herb Saururus chinensis Baill and the aquatic plant Saururus cernuus. Manassantin A has been shown to possess potent hypoxia inducible factor 1 alpha (HIF-1α) inhibitory activity in a cell-based assay screen of thousands of natural products. Manassantin A holds promise as an anti-cancer drug since it has been shown to selectively target tumor cells over normal cells. Due to the complex biological pathways involved in cancer and hypoxia, it is difficult to determine the mode-of-action by which manassantin A inhibits HIF-1. While some of the biological activities of manassantin A have been discovered in various cell-based activity assays, the molecular basis of manassantin A’s biological activities is not well characterized. The proteins in a hypoxic MDA-MB-231 cell lysate were screened for interactions with manassantin A using large scale experiments to uncover novel manassantin A interactions that lead to the drug’s HIF-1 inhibition and anti-cancer activity. Two energetics-based approaches were utilized in this manassantin A mode-of-action study: iTRAQ-SPROX and SILAC-Pulse Proteolysis. In these energetics-based approaches, protein stability is measured using the chemical denaturant dependence of either a methionine oxidation reaction (iTRAQ-SPROX) or a thermolysin protease digest (SILAC-Pulse Proteolysis). Using boh of these techniques, the stability of proteins in the absence and presence of excess manassantin A was monitored to assess ligand-induced protein stability changes.