Project description:Purpose: To investigate whether human cord blood CD34+ hematopoietic stem and progenitor cells (CB HSPCs) transduced with CBFA2T3-GLIS2 (C/G) expression construct recapitulates primary C/G acute myeloid leukemia (AML). Methods: CB HSPCs were transduced with either C/G fusion/GFP or GFP control contruct (C/G-CB or GFP-CB cells, respectively) and cultured in endothelial cell (EC) co-culture or myeloid promoting culture (MC) for 12 weeks. RNA from transduced cells were isolated at week 1, 6 and 12 in either culture condition. Whole transcriptome RNA-sequencing was conducted using 75bp strand-specific paired-end mRNA libraries and sequenced on the Illumina HiSeq 2000/2500. Results: Unsurpervised clustering analysis of RNA-sequencing of C/G-CB cells cultured with ECs or in MC demonstrated that the C/G-CB cells from weeks 6 and 12 in EC co-culture clustered with primary C/G-positive patient samples, but not C/G-CB cells cultured in MC nor GFP controls. In addition, EC C/G-CB cells had signficant enrichemnt of WNT, HEDGEHOG and TGF-beta pathways. However, both EC and MC cultures revealed up-regulation of ERG and BMP2, genes compared to GFP control, which are genes previously shown to be strongly upregulated in C/G AML, and concomitant down-regulation of the erythroid-megakaryocyte differentiation gene GATA1. Conclusions: We find that lentiviral transduction of C/G fusion is sufficient to induce malignant transformation of human CB HSPCs that recapitulates the transcriptome of primary C/G AML.
Project description:Transcriptome Sequence Analysis of Pediatric Acute Megakaryoblastic Leukemia Identifies An Inv(16)(p13.3;q24.3)-Encoded CBFA2T3-GLIS2 Fusion Protein As a Recurrent Lesion in 39% of Non-Infant Cases: A Report From the St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project. Acute Megakaryoblastic Leukemia (AMKL) accounts for ~10% of childhood acute myeloid leukemia (AML). Although AMKL patients with down syndrome (DS-AMKL) have an excellent 5 year event-free survival (EFS), non-DS-AMKL patients have an extremely poor outcome with a 3 year EFS of less than 40%. With the exception of the t(1;22) translocation seen in infant non-DS-AMKL, little is known about the molecular genetic lesions that underlie this leukemia subtype. To define the landscape of mutations that occur in non-DS-AMKL, we performed transcriptome sequencing on diagnostic blasts from 14 cases (discovery cohort) using the illumina platform. Our results identified chromosomal rearrangements resulting in the expression of novel fusion transcripts in 12/14 cases. Remarkably, in 7/14 cases we detected an inversion on chromosome 16 [inv(16)(p13.3;q24.3)] that resulted in the juxtaposition of the CBFA2T3, a member of the ETO family of transcription factors, next to GLIS2 resulting in a CBFA2T3-GLIS2 chimeric gene encoding an in frame fusion protein. 6 cases in the discovery cohort fused exon 10 of CBFA2T3 to exon 3 of GLIS2, while 1 case carried a larger product that fused exon 11 of CBFA2T3 to exon 1 of GLIS2. Both products retain the 3 CBFA2T3 N-terminal nervy homology regions that mediate protein interactions, and the 5 GLIS2 C-terminal zinc finger domains that bind the Glis DNA consensus sequence, along with one of its N-terminal transcriptional regulatory domains. GLIS2 is a member of the GLI super family of transcription factors and has been demonstrated to play a role in regulating expression of GLI target genes as well as inhibiting WNT signaling through the binding of beta catenin. Although GLIS2 is not normally expressed in hematopoietic cells, the translocation results in high level expression of the CBFA2T3-GLIS2 fusion protein. In addition to CBFA2T3-GLIS2, chimeric transcripts were detected in 6/7 cases that lacked evidence of the inv(16)(p13.3;q24.3). Specifically, we detected GATA2-HOXA9, MN1-FLI1, NIPBL-HOXB9, NUP98-KDM5A, GRB10-SDK1 and C8orf76-HOXA11AS, each in an individual case. Importantly, several of the genes involved in these translocations either play a direct role in normal megakaryocytic differentiation (GATA2 and FLI1), or have been previously shown to be involved in leukemogenesis (HOXA9, MN1, HOXB9). Evaluation of a recurrency cohort of 42 samples including 14 additional pediatric cases and 28 adult cases by RT-PCR revealed 4 additional pediatric samples carrying CBFA2T3-GLIS2 for an overall frequency of 39% in pediatric AMKL. In addition to these somatic structural variations, we also identified mutations in genes previously shown to play a role in megakaryoblastic leukemia including activating mutations in JAK2 and MPL (36%). To gain insight into the mechanism whereby CBFA2T3-GLIS2 promotes leukemogenesis, we introduced the fusion into murine hematopoietic cells and assessed its effect on in vitro colony replating as a surrogate measure of self-renewal. Hematopoietic cells transduced with a mCherry expressing retroviral vector failed to form colonies after the second replating. By contrast, expression of either wild-type GLIS2 or the CBFA2T3-GLIS2 fusion resulted in a marked increase in the self-renewal capacity, with colony formation persisting through eight replatings. Immunophenotypic analysis of the CBFA2T3-GLIS2 expressing colonies revealed evidence of megakaryocytic differentiation. Importantly, the CBFA2T3-GLIS2 cells remained growth factor dependent suggesting that cooperating mutations in growth factor signaling pathways are required for full leukemic transformation. Taken together these data identify a novel cryptic inv(16)-encoded CBFA2T3-GLIS2 fusion protein as a recurrent driver mutation in approximately 40% of non-infant pediatric non-DS-AMKLs. Moreover, the majority of pediatric cases that lacked this lesion were shown by transcriptome sequence analysis to contain other chromosomal rearrangements that encoded fusion proteins that directly alter megakaryocytic differentiation and/or myeloid cell growth. The alteration of a key transcriptional regulator within the hedgehog signaling pathways in a substantial percentage of pediatric AMKL raises the possibility that inhibition of this pathway may have a therapeutic benefit in this aggressive form of AML. Gene expression profiling was performed on 14 single diagnosis tumor samples
Project description:Transcriptome Sequence Analysis of Pediatric Acute Megakaryoblastic Leukemia Identifies An Inv(16)(p13.3;q24.3)-Encoded CBFA2T3-GLIS2 Fusion Protein As a Recurrent Lesion in 39% of Non-Infant Cases: A Report From the St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project. Acute Megakaryoblastic Leukemia (AMKL) accounts for ~10% of childhood acute myeloid leukemia (AML). Although AMKL patients with down syndrome (DS-AMKL) have an excellent 5 year event-free survival (EFS), non-DS-AMKL patients have an extremely poor outcome with a 3 year EFS of less than 40%. With the exception of the t(1;22) translocation seen in infant non-DS-AMKL, little is known about the molecular genetic lesions that underlie this leukemia subtype. To define the landscape of mutations that occur in non-DS-AMKL, we performed transcriptome sequencing on diagnostic blasts from 14 cases (discovery cohort) using the illumina platform. Our results identified chromosomal rearrangements resulting in the expression of novel fusion transcripts in 12/14 cases. Remarkably, in 7/14 cases we detected an inversion on chromosome 16 [inv(16)(p13.3;q24.3)] that resulted in the juxtaposition of the CBFA2T3, a member of the ETO family of transcription factors, next to GLIS2 resulting in a CBFA2T3-GLIS2 chimeric gene encoding an in frame fusion protein. 6 cases in the discovery cohort fused exon 10 of CBFA2T3 to exon 3 of GLIS2, while 1 case carried a larger product that fused exon 11 of CBFA2T3 to exon 1 of GLIS2. Both products retain the 3 CBFA2T3 N-terminal nervy homology regions that mediate protein interactions, and the 5 GLIS2 C-terminal zinc finger domains that bind the Glis DNA consensus sequence, along with one of its N-terminal transcriptional regulatory domains. GLIS2 is a member of the GLI super family of transcription factors and has been demonstrated to play a role in regulating expression of GLI target genes as well as inhibiting WNT signaling through the binding of beta catenin. Although GLIS2 is not normally expressed in hematopoietic cells, the translocation results in high level expression of the CBFA2T3-GLIS2 fusion protein. In addition to CBFA2T3-GLIS2, chimeric transcripts were detected in 6/7 cases that lacked evidence of the inv(16)(p13.3;q24.3). Specifically, we detected GATA2-HOXA9, MN1-FLI1, NIPBL-HOXB9, NUP98-KDM5A, GRB10-SDK1 and C8orf76-HOXA11AS, each in an individual case. Importantly, several of the genes involved in these translocations either play a direct role in normal megakaryocytic differentiation (GATA2 and FLI1), or have been previously shown to be involved in leukemogenesis (HOXA9, MN1, HOXB9). Evaluation of a recurrency cohort of 42 samples including 14 additional pediatric cases and 28 adult cases by RT-PCR revealed 4 additional pediatric samples carrying CBFA2T3-GLIS2 for an overall frequency of 39% in pediatric AMKL. In addition to these somatic structural variations, we also identified mutations in genes previously shown to play a role in megakaryoblastic leukemia including activating mutations in JAK2 and MPL (36%). To gain insight into the mechanism whereby CBFA2T3-GLIS2 promotes leukemogenesis, we introduced the fusion into murine hematopoietic cells and assessed its effect on in vitro colony replating as a surrogate measure of self-renewal. Hematopoietic cells transduced with a mCherry expressing retroviral vector failed to form colonies after the second replating. By contrast, expression of either wild-type GLIS2 or the CBFA2T3-GLIS2 fusion resulted in a marked increase in the self-renewal capacity, with colony formation persisting through eight replatings. Immunophenotypic analysis of the CBFA2T3-GLIS2 expressing colonies revealed evidence of megakaryocytic differentiation. Importantly, the CBFA2T3-GLIS2 cells remained growth factor dependent suggesting that cooperating mutations in growth factor signaling pathways are required for full leukemic transformation. Taken together these data identify a novel cryptic inv(16)-encoded CBFA2T3-GLIS2 fusion protein as a recurrent driver mutation in approximately 40% of non-infant pediatric non-DS-AMKLs. Moreover, the majority of pediatric cases that lacked this lesion were shown by transcriptome sequence analysis to contain other chromosomal rearrangements that encoded fusion proteins that directly alter megakaryocytic differentiation and/or myeloid cell growth. The alteration of a key transcriptional regulator within the hedgehog signaling pathways in a substantial percentage of pediatric AMKL raises the possibility that inhibition of this pathway may have a therapeutic benefit in this aggressive form of AML. Gene expression profiling was performed on 29 single diagnosis tumor samples
Project description:Transcriptome Sequence Analysis of Pediatric Acute Megakaryoblastic Leukemia Identifies An Inv(16)(p13.3;q24.3)-Encoded CBFA2T3-GLIS2 Fusion Protein As a Recurrent Lesion in 39% of Non-Infant Cases: A Report From the St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project. Acute Megakaryoblastic Leukemia (AMKL) accounts for ~10% of childhood acute myeloid leukemia (AML). Although AMKL patients with down syndrome (DS-AMKL) have an excellent 5 year event-free survival (EFS), non-DS-AMKL patients have an extremely poor outcome with a 3 year EFS of less than 40%. With the exception of the t(1;22) translocation seen in infant non-DS-AMKL, little is known about the molecular genetic lesions that underlie this leukemia subtype. To define the landscape of mutations that occur in non-DS-AMKL, we performed transcriptome sequencing on diagnostic blasts from 14 cases (discovery cohort) using the illumina platform. Our results identified chromosomal rearrangements resulting in the expression of novel fusion transcripts in 12/14 cases. Remarkably, in 7/14 cases we detected an inversion on chromosome 16 [inv(16)(p13.3;q24.3)] that resulted in the juxtaposition of the CBFA2T3, a member of the ETO family of transcription factors, next to GLIS2 resulting in a CBFA2T3-GLIS2 chimeric gene encoding an in frame fusion protein. 6 cases in the discovery cohort fused exon 10 of CBFA2T3 to exon 3 of GLIS2, while 1 case carried a larger product that fused exon 11 of CBFA2T3 to exon 1 of GLIS2. Both products retain the 3 CBFA2T3 N-terminal nervy homology regions that mediate protein interactions, and the 5 GLIS2 C-terminal zinc finger domains that bind the Glis DNA consensus sequence, along with one of its N-terminal transcriptional regulatory domains. GLIS2 is a member of the GLI super family of transcription factors and has been demonstrated to play a role in regulating expression of GLI target genes as well as inhibiting WNT signaling through the binding of beta catenin. Although GLIS2 is not normally expressed in hematopoietic cells, the translocation results in high level expression of the CBFA2T3-GLIS2 fusion protein. In addition to CBFA2T3-GLIS2, chimeric transcripts were detected in 6/7 cases that lacked evidence of the inv(16)(p13.3;q24.3). Specifically, we detected GATA2-HOXA9, MN1-FLI1, NIPBL-HOXB9, NUP98-KDM5A, GRB10-SDK1 and C8orf76-HOXA11AS, each in an individual case. Importantly, several of the genes involved in these translocations either play a direct role in normal megakaryocytic differentiation (GATA2 and FLI1), or have been previously shown to be involved in leukemogenesis (HOXA9, MN1, HOXB9). Evaluation of a recurrency cohort of 42 samples including 14 additional pediatric cases and 28 adult cases by RT-PCR revealed 4 additional pediatric samples carrying CBFA2T3-GLIS2 for an overall frequency of 39% in pediatric AMKL. In addition to these somatic structural variations, we also identified mutations in genes previously shown to play a role in megakaryoblastic leukemia including activating mutations in JAK2 and MPL (36%). To gain insight into the mechanism whereby CBFA2T3-GLIS2 promotes leukemogenesis, we introduced the fusion into murine hematopoietic cells and assessed its effect on in vitro colony replating as a surrogate measure of self-renewal. Hematopoietic cells transduced with a mCherry expressing retroviral vector failed to form colonies after the second replating. By contrast, expression of either wild-type GLIS2 or the CBFA2T3-GLIS2 fusion resulted in a marked increase in the self-renewal capacity, with colony formation persisting through eight replatings. Immunophenotypic analysis of the CBFA2T3-GLIS2 expressing colonies revealed evidence of megakaryocytic differentiation. Importantly, the CBFA2T3-GLIS2 cells remained growth factor dependent suggesting that cooperating mutations in growth factor signaling pathways are required for full leukemic transformation. Taken together these data identify a novel cryptic inv(16)-encoded CBFA2T3-GLIS2 fusion protein as a recurrent driver mutation in approximately 40% of non-infant pediatric non-DS-AMKLs. Moreover, the majority of pediatric cases that lacked this lesion were shown by transcriptome sequence analysis to contain other chromosomal rearrangements that encoded fusion proteins that directly alter megakaryocytic differentiation and/or myeloid cell growth. The alteration of a key transcriptional regulator within the hedgehog signaling pathways in a substantial percentage of pediatric AMKL raises the possibility that inhibition of this pathway may have a therapeutic benefit in this aggressive form of AML.
Project description:Transcriptome Sequence Analysis of Pediatric Acute Megakaryoblastic Leukemia Identifies An Inv(16)(p13.3;q24.3)-Encoded CBFA2T3-GLIS2 Fusion Protein As a Recurrent Lesion in 39% of Non-Infant Cases: A Report From the St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project. Acute Megakaryoblastic Leukemia (AMKL) accounts for ~10% of childhood acute myeloid leukemia (AML). Although AMKL patients with down syndrome (DS-AMKL) have an excellent 5 year event-free survival (EFS), non-DS-AMKL patients have an extremely poor outcome with a 3 year EFS of less than 40%. With the exception of the t(1;22) translocation seen in infant non-DS-AMKL, little is known about the molecular genetic lesions that underlie this leukemia subtype. To define the landscape of mutations that occur in non-DS-AMKL, we performed transcriptome sequencing on diagnostic blasts from 14 cases (discovery cohort) using the illumina platform. Our results identified chromosomal rearrangements resulting in the expression of novel fusion transcripts in 12/14 cases. Remarkably, in 7/14 cases we detected an inversion on chromosome 16 [inv(16)(p13.3;q24.3)] that resulted in the juxtaposition of the CBFA2T3, a member of the ETO family of transcription factors, next to GLIS2 resulting in a CBFA2T3-GLIS2 chimeric gene encoding an in frame fusion protein. 6 cases in the discovery cohort fused exon 10 of CBFA2T3 to exon 3 of GLIS2, while 1 case carried a larger product that fused exon 11 of CBFA2T3 to exon 1 of GLIS2. Both products retain the 3 CBFA2T3 N-terminal nervy homology regions that mediate protein interactions, and the 5 GLIS2 C-terminal zinc finger domains that bind the Glis DNA consensus sequence, along with one of its N-terminal transcriptional regulatory domains. GLIS2 is a member of the GLI super family of transcription factors and has been demonstrated to play a role in regulating expression of GLI target genes as well as inhibiting WNT signaling through the binding of beta catenin. Although GLIS2 is not normally expressed in hematopoietic cells, the translocation results in high level expression of the CBFA2T3-GLIS2 fusion protein. In addition to CBFA2T3-GLIS2, chimeric transcripts were detected in 6/7 cases that lacked evidence of the inv(16)(p13.3;q24.3). Specifically, we detected GATA2-HOXA9, MN1-FLI1, NIPBL-HOXB9, NUP98-KDM5A, GRB10-SDK1 and C8orf76-HOXA11AS, each in an individual case. Importantly, several of the genes involved in these translocations either play a direct role in normal megakaryocytic differentiation (GATA2 and FLI1), or have been previously shown to be involved in leukemogenesis (HOXA9, MN1, HOXB9). Evaluation of a recurrency cohort of 42 samples including 14 additional pediatric cases and 28 adult cases by RT-PCR revealed 4 additional pediatric samples carrying CBFA2T3-GLIS2 for an overall frequency of 39% in pediatric AMKL. In addition to these somatic structural variations, we also identified mutations in genes previously shown to play a role in megakaryoblastic leukemia including activating mutations in JAK2 and MPL (36%). To gain insight into the mechanism whereby CBFA2T3-GLIS2 promotes leukemogenesis, we introduced the fusion into murine hematopoietic cells and assessed its effect on in vitro colony replating as a surrogate measure of self-renewal. Hematopoietic cells transduced with a mCherry expressing retroviral vector failed to form colonies after the second replating. By contrast, expression of either wild-type GLIS2 or the CBFA2T3-GLIS2 fusion resulted in a marked increase in the self-renewal capacity, with colony formation persisting through eight replatings. Immunophenotypic analysis of the CBFA2T3-GLIS2 expressing colonies revealed evidence of megakaryocytic differentiation. Importantly, the CBFA2T3-GLIS2 cells remained growth factor dependent suggesting that cooperating mutations in growth factor signaling pathways are required for full leukemic transformation. Taken together these data identify a novel cryptic inv(16)-encoded CBFA2T3-GLIS2 fusion protein as a recurrent driver mutation in approximately 40% of non-infant pediatric non-DS-AMKLs. Moreover, the majority of pediatric cases that lacked this lesion were shown by transcriptome sequence analysis to contain other chromosomal rearrangements that encoded fusion proteins that directly alter megakaryocytic differentiation and/or myeloid cell growth. The alteration of a key transcriptional regulator within the hedgehog signaling pathways in a substantial percentage of pediatric AMKL raises the possibility that inhibition of this pathway may have a therapeutic benefit in this aggressive form of AML.
Project description:CBFA2T3-GLIS2 is a fusion oncogene found in pediatric acute megakaryoblastic leukemia (AMKL) that is associated with a poor prognosis. We established a model of CBFA2T3-GLIS2 driven AMKL that allows the distinction of fusion specific changes from those that reflect the megakaryoblast lineage of this leukemia. Using this model, we mapped genome wide binding that in turn imparts the characteristic transcriptional signature. A network of transcription factor genes bound and upregulated by the fusion were found to have downstream effects that result in dysregulated signaling of developmental pathways including NOTCH, Hedgehog, TGF, and WNT. Transcriptional regulation is mediated by homo-dimerization and binding of the ETO transcription factor through the nervy homology region 2 (NHR2). Loss of NHR2 abrogated the development of leukemia and led to the downregulation of JAK/STAT and NOTCH transcriptional signatures. These data contribute to the understanding of CBFA2T3-GLIS2 mediated leukemogenesis and identify potential therapeutic vulnerabilities for future studies.
Project description:We engineered human models of CBFA2T3::GLIS2 acute megakaryoblastic leukemia and compared gene expression profiles to primary pediatric samples.
Project description:This SuperSeries is composed of the following subset Series: GSE35201: Transcriptome Sequence Analysis of Pediatric Acute Megakaryoblastic Leukemia Identifies An Inv(16)(p13.3;q24.3)-Encoded CBFA2T3-GLIS2 Fusion Protein As a Recurrent Lesion in 39% of Non-Infant Cases [2007] GSE35202: Transcriptome Sequence Analysis of Pediatric Acute Megakaryoblastic Leukemia Identifies An Inv(16)(p13.3;q24.3)-Encoded CBFA2T3-GLIS2 Fusion Protein As a Recurrent Lesion in 39% of Non-Infant Cases [2010] Refer to individual Series
Project description:These data were generated to investigate the impact on the gene expression of the chimeric transcription factor CBFA2T3-GLIS2 (a.k.a ETO2-GLIS2 and abbreviated here as EG) which is associated with pediatric leukemia (LAM7), to assess the functional roles of several domains of this protein (the ETO2 and GLIS2 moiety) on the gene dysregulation induced by EG through the generation of several mutants (deleted for the NHR2 domain of ETO2: dNHR2 or with a C265G mutation in the GLIS2 moiety: C265G). The different EG forms were cloned into a doxycycline-inducible lentiviral vector and transcriptomes were performed 24 hours post doxycycline induction.