Project description:Polyhydroxyalkanoates (PHAs) are bio-based, biodegradable polyesters that can be produced from organic-rich waste streams using mixed microbial cultures. To maximize PHA production, mixed microbial cultures may be enriched for PHA-producing bacteria with a high storage capacity through the imposition of cyclic, aerobic feast-famine conditions in a sequencing batch reactor (SBR). Though enrichment SBRs have been extensively investigated a bulk solutions-level, little evidence at the proteome level is available to describe the observed SBR behavior to guide future SBR optimization strategies. As such, the purpose of this investigation was to characterize proteome dynamics of a mixed microbial culture in an SBR operated under aerobic feast-famine conditions using fermented dairy manure as the feedstock for PHA production. At the beginning of the SBR cycle, excess PHA precursors were provided to the mixed microbial culture (i.e., feast), after which followed a long duration devoid of exogenous substrate (i.e., famine). Two-dimensional electrophoresis was used to separate protein mixtures during a complete SBR cycle, and proteins of interest were identified.
Project description:Guanosine 3 ,5 -bispyrophosphate (ppGpp), also known as ‘‘magic spot,’’ has been shown to bind prokaryotic RNA polymerase to down-regulate ribosome production and increase transcription of amino acid biosynthesis genes during the stringent response to amino acid starvation. Because many environmental growth perturbations cause ppGpp to accumulate, we hypothesize ppGpp to have an overarching role in regulating the genetic program that coordinates transitions between logarithmic growth (feast) and growth arrest (famine). We used the classic glucose-lactose diauxie as an experimental system to investigate the temporal changes in transcription that accompany growth arrest and recovery in wildtype Escherichia coli and in mutants that lack RelA (ppGpp synthetase) and other global regulators, i.e., RpoS and Crp. When cultured on a mixture of glucose and lactose, E. coli grows preferentially on glucose until it is exhausted, resulting in growth arrest while the cells adjust to growth on lactose, i.e., diauxie. Diauxie was delayed in the relA mutant and was accompanied by a 15% decrease in the number of carbon sources used and a 3-fold overall decrease in the induction of RpoS and Crp regulon genes. Thus the data significantly expand the previously known role of ppGpp and support a model wherein the ppGpp-dependent redistribution of RNA polymerase across the genome is the driving force behind control of the stringent response, general stress response, and starvation-induced carbon scavenging. Our conceptual model of diauxie describes these global control circuits as dynamic, interconnected, and dependent upon ppGpp for the efficient temporal coordination of gene expression that programs the cell for transitions between feast and famine.
Project description:Guanosine 3 ,5 -bispyrophosphate (ppGpp), also known as ‘‘magic spot,’’ has been shown to bind prokaryotic RNA polymerase to down-regulate ribosome production and increase transcription of amino acid biosynthesis genes during the stringent response to amino acid starvation. Because many environmental growth perturbations cause ppGpp to accumulate, we hypothesize ppGpp to have an overarching role in regulating the genetic program that coordinates transitions between logarithmic growth (feast) and growth arrest (famine). We used the classic glucose-lactose diauxie as an experimental system to investigate the temporal changes in transcription that accompany growth arrest and recovery in wildtype Escherichia coli and in mutants that lack RelA (ppGpp synthetase) and other global regulators, i.e., RpoS and Crp. When cultured on a mixture of glucose and lactose, E. coli grows preferentially on glucose until it is exhausted, resulting in growth arrest while the cells adjust to growth on lactose, i.e., diauxie. Diauxie was delayed in the relA mutant and was accompanied by a 15% decrease in the number of carbon sources used and a 3-fold overall decrease in the induction of RpoS and Crp regulon genes. Thus the data significantly expand the previously known role of ppGpp and support a model wherein the ppGpp-dependent redistribution of RNA polymerase across the genome is the driving force behind control of the stringent response, general stress response, and starvation-induced carbon scavenging. Our conceptual model of diauxie describes these global control circuits as dynamic, interconnected, and dependent upon ppGpp for the efficient temporal coordination of gene expression that programs the cell for transitions between feast and famine. E. coli MG1655 and isogenic mutants were cultured in a 2 l Biostat B fermentor (B. Braun Biotech International) containing 1 liter of Morpholinepropanesulfonic acid (MOPS) minimal medium with 0.5 g/l of glucose and 1.5 g/l of lactose. The temperature was maintained at 37 ºC and pH was kept constant at 7.2 by the addition of 2 M NaOH. The dissolved oxygen level was maintained above 20% of saturation by adjusting the agitation speeds in the range of 270-500 rpm with fixed 1 l/min air flow.
Project description:Methanotrophs, which help regulate atmospheric levels of methane, are active in diverse natural and man-made environments. This range of habitats and the feast-famine cycles seen by many environmental methanotrophs suggest that methanotrophs dynamically mediate rates of methane oxidation. Global methane budgets require ways to account for this variability in time and space. Functional gene biomarker transcripts are increasingly being studied to inform the dynamics of diverse biogeochemical cycles. Previously, per-cell transcript levels of the methane oxidation biomarker, pmoA, were found to vary quantitatively with respect to methane oxidation rates in model aerobic methanotroph, Methylosinus trichosporium OB3b. In the present study, these trends were explored for two additional aerobic methanotroph pure cultures, Methylocystis parvus OBBP and Methylomicrobium album BG8. At steady-state conditions, per cell pmoA mRNA transcript levels strongly correlated with per cell methane oxidation across the three methanotrophs across many orders of magnitude of activity (R2 = 0.91). Additionally, genome-wide expression data (RNA-seq) were used to explore transcriptomic responses of steady state M. album BG8 cultures to short-term CH4 and O2 limitation. These limitations induced regulation of genes involved in central carbon metabolism (including carbon storage), cell motility, and stress response.