Project description:Testing of response of hetertrophic partners (Halomonas sp. HL-48 and Marinobacter sp. HL-58) to both axenic and co-culture growth using both glucose and xylose
Project description:Circulating biomarkers play important roles in diagnosis of malignant tumors. N-glycosylation is an important post-translation patter and obviously affect biological behaviors of malignant tumor cells. However, the role of N-glycosylation sites in early diagnosis of tumors still remains further investigation. In this study, plasma from 20 lung adenocarcinoma (LUAD), which were all classified as stage I, as well as 20 normal controls (NL) were labeled and screened by mass spectrometry (MS). Total 39 differential N-glycosylation sites were detected in LUAD, 17 were up-regulated and 22 were down-regulated. In all differential sites, ITGB3-680 showed highest potential in LUAD which showed 99.2% AUC, 95.0% SP and 95.0% SN. Besides, APOB-1523 (AUC: 89.0%, SP: 95.0%, SN: 70.0%), APOB-2982 (AUC: 86.8%, SP: 95.0%, SN: 45.0%) and LPAL2-101 (AUC: 81.1%, SP: 95.0%, SN: 47.4%) also acted as candidate biomarkers in LUAD. Combination analysis was then performed by random forest model, all samples were divided into training group (16 cases) and testing group (4 cases) and conducted by feature selection, machine learning, integrated model of classifier and model evaluation. And the results indicated that combination of differential sites could reach 100% AUC in both training and testing group. Taken together, our study revealed multiple N-glycosylation sites which could be applied as candidate biomarkers for early diagnosis diagnosis of LUAD.
Project description:The recent identification of cancer stem cells (CSCs) in multiple human cancers provides a new inroad to understanding tumorigenesis at the cellular level. CSCs are defined by their characteristics of self-renewal, multipotentiality, and tumor initiation upon transplantation. By testing for these defining characteristics, we provide evidence for the existence of CSCs in a transgenic mouse model of glioma, S100ß-verbB;Trp53. In this glioma model, CSCs are enriched in the side-population (SP) cells. These SP cells have enhanced tumor-initiating capacity, self-renewal, and multipotentiality compared to non-SP cells from the same tumors. Furthermore, gene expression analysis comparing FACS-sorted cancer SP cells to non-SP cancer cells and normal neural SP cells identified 45 candidate genes that are differentially expressed in glioma stem cells. We validated the expression of two genes from this list (S100a4 and S100a6) in primary mouse gliomas and human glioma samples. Analyses of xenografted human GBM (glioblatoma multiforme) cell lines and primary human glioma tissues show that S100A4 and S100A6 are expressed in a small subset of cancer cells and that their abundance is positively correlated to tumor grade. In conclusion, this study shows that CSCs exist in a mouse glioma model, suggesting that this model can be used to study the molecular and cellular characteristics of CSCs in vivo and to further test the cancer stem cell hypothesis.
Project description:Lemna minor a small aquatic plant has been used extensively in ecotoxicolgical testing to elucidate substance-related effects to freshwater plants. They are free-floating freshwater macrophyte, very sensitive towards chemical exposure and easy to cultivate thus makes the plant suitable for laboratory testing. Here we present a rapid and reproducible data dependent proteomics approach for identifying growth related molecular signatures in lemna minor as an alternative to algae testing. For this, we have analyzed the proteome of lemna minor exposed to bentazon as a model substances for identifying growth related molecular perturbations. These fingerprints allow for a definition of potential biomarkers as tools in screening approaches and for integration in plant growth inhibition studies, for identifying suspect substances, such as in the Lemna sp. growth inhibition test (OECD TG 221).
Project description:BACKGROUND: Human SP-A1 and SP-A2, encoded by SFTPA1 and SFTPA2 and their genetic variants differentially impact alveolar macrophage (AM) functions and regulation, including the miRNome. We investigated whether miRNome differences previously observed between AM from SP-A2 and SP-A1/SP-A2 mice are due to continued qualitative differences or a delayed response of mice carrying a single gene. METHODS: Human transgenic (hTG) mice, carrying SP-A2 or both SP-A genes and SP-A-KO mice were exposed to filtered air (FA) or O3. AM miRNA levels, target gene expression and pathways determined 18 h after O3 exposure. RESULTS: We found: (a) Differences in miRNome due to sex, SP-A genotype, and exposure; (b) miRNome of both sexes was largely downregulated by O3 ; co-ex had fewer changed (≥2X) miRNAs than either group. (c) the number and direction of expression of genes with significant changes in males and females in co-ex is almost the opposite of those in SP-A2; (iv) The same pathways were found in the studied groups; (e) O3 exposure attenuated sex differences; a higher number of genotype-dependent and genotype-independent miRNAs was common in both sexes after O3 exposure. CONCLUSION: Qualitative differences between SP-A2 and co-ex persist 18 h post-O3, and O3 attenuates sex differences.
Project description:Human SP-A1 and SP-A2, encoded by SFTPA1 and SFTPA2 and their genetic variants differentially impact alveolar macrophage (AM) functions and regulation, including the miRNome. single dose of SP-A exogenous treatment of SP-A-KO mice prior to infection, after infection, or at the time of infection significantly improved survival. we investigated the role of exogenous SP-A protein treatment on the regulation of AM miRNome in SP-A-KO mice at the time of infection. Towards this, SP-A-KO male and female mice were infected with K. pneumoniae alone or in combination with exogenous SP-A2 (1A0) protein for 6 h, and the expression levels of AM miRNAs, target mRNAs of the significant miRNAs, and pathways involved were studied. We found (i) significant differences in AM miRNome of KO in terms of sex and exposure; (ii) the expression of the overwhelming majority of miRNA targets in KO males were increased in response to infection and exogenous SP-A2 (1A0) protein treatment at the time of infection; (iii) miRNA-mRNA targets were involved in the pro-inflammatory response, anti-apoptosis, cell cycle, cellular growth and proliferation pathways. These data may assist in studying molecular mechanisms of exogenous SP-A mediated the AM miRNome regulation and potentially identify novel therapeutic targets for K. pneumoniae infection.
Project description:In humans there are two surfactant protein A (SP-A) functional genes SFTPA1 and SFTPA2 encoding innate immune molecules, SP-A1 and SP-A2, respectively, with numerous genetic variants each. SP-A interacts and regulates many of the functions of alveolar macrophages (AM). It is shown that SP-A variants differ in their ability to regulate the AM miRNome in response to oxidative stress (OxS). Because humans have both SP-A gene products, we were interested to determine the combined effect of co-expressed SP-A1/SP-A2 (co-ex) in response to ozone (O3) induced OxS on AM miRNome. Human transgenic (hTG) mice, carrying both SP-A1/SP-A2 (6A2/1A0, co-ex) and SP-A- KO were utilized. The hTG and KO mice were exposed to filtered air (FA) or O3 and miRNA levels were measured after AM isolation with or without normalization to KO. We found: (i) The AM miRNome of co-ex males and females in response to OxS to be largely downregulated after normalization to KO, but after Bonferroni multiple comparison analysis only in females the AM miRNome remained significantly different compared to control (FA); (ii) The targets of the significantly changed miRNAs were downregulated in females and upregulated in males; (iii) Several of the validated mRNA targets were involved in pro-inflammatory response, anti-apoptosis, cell cycle, cellular growth and proliferation; (iv) The AM of SP-A2 male, shown, previously to have major effect on the male AM miRNome in response to OxS, shared similarities with the co-ex, namely in pathways involved in the pro-inflammatory response and anti-apoptosis but also exhibited differences with the cell-cycle, growth, and proliferation pathway being involved in co-ex and ROS homeostasis in SP-A2 male. We speculate that the presence of both gene products versus single gene products differentially impact the AM responses in males and females in response to OxS.
Project description:To better understand the molecular mechanisms of SP cells, we screened the miRNAs expression patterns in the SP compared with the MP cells. MiRCURY™ LNA array analysis of sorted SP and MP cells from two relapsed myeloma patients with more than 70% bone marrow plasma cells were performed.