Project description:Corynebacterium glutamicum shows a great potential for the production of gamma-aminobutyric acid (GABA) from glucose fermentation via putrescine. GABA, a non-protein amino acid widespread in nature, is a component of pharmaceuticals, foods and the biodegradable plastic polyamide 4. Here, the effect of GABA in the growth of C. glutamicum was evaluated. It was estimated that the presence 1.1 M of GABA in the medium reduces the maximum growth rate of C. glutamicum to half. It was also shown that the presence of GABA in the medium negatively affects the growth of C. glutamicum in ethanol as sole carbon source. Furthermore, a new route for the production of GABA in C. glutamicum was established. GABA production from glucose fermentation via putrescine was achieved by plasmid-based overexpression of putrescine transaminase (PatA) and gamma-aminobutyraldehyde dehydrogenase (PatD) in a putrescine production strain. The resultant strain can produce 5.3 ± 0.1 g L-1 of GABA. GABA production was improved by avoiding the formation of N-acetylputrescine and by reducing the amount of nitrogen in CGXII medium. Deletion of the genes responsible for GABA catabolism and GABA re-uptake led to an increase in the GABA production of 21% achieving a titer 8.0 ± 0.3 g L-1 and an increase in the volumetric productivity of 41% reaching a productivity of 0.31 g L-1 h-1, the highest volumetric productivity achieved so far for GABA production in C. glutamicum from glucose fermentation in flasks fermentations. The results obtained hitherto are very promising and competitive compared to the traditional pathway for the production of GABA.
2015-10-22 | GSE74258 | GEO
Project description:GABA formation in cucumber fermentation
Project description:Background: Of the many neurotransmitters in humans, gamma-aminobutyric acid (GABA) shows potential for improving several mental health indications such as stress and anxiety. The microbiota-gut-brain axis is an important pathway for GABAergic effects, as microbially-secreted GABA within the gut can affect host mental functionhealth outcomes. Understanding the molecular characteristics of GABA production by microbes within the gut can offer insight to novel therapies for mental health. Results: Three strains of Levilactobacillus brevis with syntenous glutamate decarboxylase (GAD) operons were evaluated for overall growth, glutamate utilization, and GABA production in typical synthetic growth media supplemented with monosodium glutamate (MSG). Levilactobacillus brevis Lbr-6108 (Lbr-6108) and Levilactobacillus brevis Lbr-35 (Lbr-35) had similar growth profiles but differed significantly in GABA secretion and acid resistance. Lbr-6108 produced GABA early, within the growth phase, and produced significantly more GABA than Lbr-35 and the type strain Levilactobacillus brevis ATCC 14689 after the stationary phase. The global gene expression during GABA production was determined by RNA sequencing at several timepoints. The GAD operon, responsible for GABA production and secretion, activated in Lbr-6108 after only six hours of fermentation and continued throughout the stationary phase. Furthermore, Lbr-6108 activated many different acid resistance mechanisms concurrently, which contribute to acid tolerance and energy production. In contrast, Lbr-35, which has a genetically similar GAD operon, including two copies of the GAD gene, showed no upregulation of the GAD operon, even when cultured with MSG. Conclusions: This study is the first to evaluate whole transcriptome changes in L. brevis during GABA production over multiple timepoints. The concurrent expression of multiple acid-resistance mechanisms reveals niche-specific metabolic functionality between common human commensals and highlights the complex regulation of GABA metabolism in this important microbial species. Furthermore, the increased and rapid GABA production of Lbr-6108 highlights the strain’s potential as a therapeutic and the overall value of screening microbes for effector molecule output.
Project description:Purpose: High γ-aminobutyric acid (GABA)-producing Levilactobacillus brevis strain NPS-QW 145 along with Streptococcus thermophilus (one of the two starter bacteria used to make yogurt for its proteolytic activity) to enhance GABA production in milk. But a mechanistic understanding on how Levilactobacillus brevis cooperated with S. thermophilus to stimulate GABA production has been lacking. Method: Metatranscriptomic analyses combined with peptidomics were carried out to unravel the casein and lactose utilization patterns during milk fermentation with the co-culture. Results: We found particular peptides hydrolyzed by S. thermophilus 1275 were transported and biodegraded with peptidase in Lb. brevis 145 to meet the growth needs of the latter. In addition, amino acid synthesis and metabolism in Lb. brevis 145 were also activated to further support its growth. Glucose, as a result of lactose hydrolysis by S. thermophilus 1275, but not available lactose in milk, was outcompeted by Lb. brevis 145 as a main carbon source for glycolysis to produce ATP.In the stationary phase, under the acidic condition due to accumulation of lactic acid produced by S. thermophilus 1275, genes expression involved in pyridoxal phosphate (coenzyme of glutamic acid decarboxylase) metabolism and glutamic acid decarboxylase (Gad) in Lb. brevis 145 were induced for GABA production.
Project description:Hepatic lipid accumulation is a hallmark of type 2 diabetes (T2D) and associated with hyperinsulinemia, insulin resistance, and hyperphagia. Hepatic synthesis of GABA, catalyzed by GABA-transaminase (GABA-T), is upregulated in obese mice. To assess the role of hepatic GABA production in obesity-induced metabolic and energy dysregulation, we treated mice with two pharmacologic GABA-T inhibitors and also knocked down hepatic GABA-T expression using an antisense oligonucleotide. Hepatic GABA-T inhibition and knockdown decreased basal hyperinsulinemia and hyperglycemia, and improved glucose intolerance. GABA-T knockdown improved insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps in obese mice. Hepatic GABA-T knockdown also decreased food intake and induced weight loss without altering energy expenditure in obese mice. Data from obese humans support that hepatic GABA production and transport are associated with serum insulin, HOMA-IR, T2D, and BMI. These results support a key role for hepatocyte GABA production in the dysfunctional glucoregulation and feeding behavior associated with obesity.
Project description:UPLC-MS/MS data used to confirm the retention times of bile acid conjugates to GABA and tyramine that were detected in microbial culture and human fecal samples. Synthesized conjugates included here are GABA-deoxycholic acid, tyramine-deoxycholic acid, GABA-cholic acid, tyramine-cholic acid, GABA-chenodeoxycholic acid, and tyramine-chenodeoxycholic acid. Data of biological samples (B. fragilis P207 spiked with DCA, healthy human donor 11 feces, patient 207 v12 feces) from the same UPLCMS/MS sequence is included for comparison and validation. All using positive ionization.
Project description:au05-03_gaba - ler vs pop2-1: gaba over-accumulation effects - The analysis aims at identifying genes that are differentially regulated by the over-accumulation of GABA observed in the mutant pop2-1 in response to treatment with exogenous GABA and that may explain the singular phenotype of the mutant in this condition. Designed experiment consisted in comparison of transcriptomes of Arabidopsis thaliana Landsberg erecta ecotype and its mutant pop2-1 (impaired in GABA transaminase activity) during a kinetic of endogenous GABA accumulation. For this purpose, 10-day-old plants grown on half strength Hoagland's agar medium were transferred to agar plates supplemented with 1 mM GABA. We isolated RNA from plants treated for 0, 1 and 4 days. Treatments were made in duplicate. Keywords: gene knock-out, time course 6 dye-swap - CATMA arrays
Project description:Although two genes responsive to GABA were characterized previously in plants (Kathiresan et al 1997), a comprehensive study in reproductive and vegetative tissues has not been performed. Consequently, genes that mediate GABA response in plants remain unknown. We therefore used microarrays to survey the genome, identifying genes modulated in response to GABA in reproductive tissues. Flowers were collected as described in the protocols section for RNA extraction and hybridization on Affymetrix ATH1 Genechip microarrays. Gene expression in wild-type and pop2-1 mutant flowers containing high levels of endogenous GABA were compared.