Project description:Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns. Experiment Overall Design: Affymetrix expression profiling was used to study gene expression in immature ear tissue from maize. Three biological replicates were performed for four different genotypes; B73, Mo17, B73xMo17 and Mo17xB73.
Project description:Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns. Keywords: genotype comparison
Project description:Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns. Keywords: genotype comparison
Project description:Here we report genome-wide high resolution allele-specific maps of DNA methylation and histone H3 lysine 27 trimethylation (H3K27me3) in maize endosperm. To investigate the allele-specific DNA methylation pattern of maize endosperm on a genome-wide scale, we performed MethylC-seq for shoot, embryo, and endosperm tissue 12 d after pollination (DAP) of inbred B73, and the endosperm tissue 12 DAP of reciprocal crosses B73 Ã Mo17 (BM) and Mo17 Ã B73 (MB). We also performed additional RNA-seq for samples from 12-DAP and 10-DAP endosperm of both reciprocal crosses between inbreds B73 and Mo17
Project description:Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns. Keywords: genotype comparison
Project description:Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns. Experiment Overall Design: Affymetrix expression profiling was used to study gene expression in aerial tissue from 11-day seedlings of maize. Three biological replicates were performed for four different genotypes; B73, Mo17, B73xMo17 and Mo17xB73.
Project description:This SuperSeries is composed of the following subset Series:; GSE8174: Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression - Seedling data; GSE8176: Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression - Immature ear data; GSE8179: Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression - Embryo data Experiment Overall Design: Refer to individual Series
Project description:This is a total RNA-seq data set of two inbred lines of maize, B73 and Mo17, extracted from experiment E-GEOD-39232 (https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-39232/). E-GEOD-39232 is a larger study which also studied the expression of small RNAs and genome-wide cytosine methylation pattern in the two cultivars using high-throughput sequencing methods. For total RNA-seq, three biological replicates were used per cultivar. E-GEOD-39232 was originally submitted to NCBI Gene Expression Omnibus under accession number GSE39232 (http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE39232) and later imported to ArrayExpress as E-GEOD-39232.
Project description:Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns. Experiment Overall Design: Affymetrix expression profiling was used to study gene expression in 19 day after pollination embryo tissue of maize. Three biological replicates were performed for four different genotypes; B73, Mo17, B73xMo17 and Mo17xB73.
Project description:Maize earshoot is a metabolic sink espcially related to nitrogen metabolism. Studies on the transcriptomic and metabolic changes occuring in earshoot can provide interesting answers about the nitrogen metabolic potential of the maize variety under study. B73 X Mo17 is a model maize hybrid. Developing earshoots from this genotype grown at nitrogen-deficient and nitrogen-sufficient conditions were sampled, processed and analyzed through microarray technology.