Project description:The proliferation and migration of cancer cells are regulated by stimuli from the tumour microenvironment during tumour progression and metastasis. While transforming growth factor-β (TGF-β) increases migration and metastasis of various types of epithelial cancer cells via induction of epithelial-mesenchymal transition (EMT), it also inhibits their proliferation by inducing cell cycle arrest in the G1 phase. However, the correlation between the tumour promoting and suppressing effects of TGF-β remains elusive because of the lack of analysis at the single-cell level. Here, we showed that TGF-β conferred higher motility and mesenchymal phenotypes to oral cancer cells residing in the G1 phase, suggesting a correlation between TGF-β-dependent cell cycle arrest and increased cell migration. We identified keratin-associated protein 2-3 (KRTAP2-3) as a regulator of these dual effects of TGF-β and showed that the expression of KRTAP2-3 was associated with TGF-β-induced cell cycle arrest and increased migration and correlated with poor prognosis in patients with head and neck cancer. Deletion of the KRTAP2-3 gene decreased in vitro migration and in vivo metastasis of oral cancer cells via induction of mesenchymal-epithelial transition. KRTAP2-3 also induced the expression of the zinc finger BED domain-containing protein 2 and ectodermal-neural cortex 1, which suppressed proliferation and increased migration of oral cancer cells, respectively. The present findings revealed the mechanisms by which TGF-β orchestrates proliferation and migration of cancer cells by inducing the expression of KRTAP2-3 and highlighted the importance of targeting motile cancer cells under cell cycle arrest in the G1 phase to suppress metastasis. Identification of marker genes for KRTAP2-3 induced gene
Project description:Smad2 and Smad3 (Smad2/3) primarily mediates the transforming growth factor-β (TGF-β) signaling that drives cell proliferation, differentiation, and migration. The dynamics of the Smad2/3 phosphorylation provides the key mechanism for regulating the TGF-β signaling pathway. Here we identified NLK as a novel regulator of TGF-β signaling pathway via modulating the phosphorylation of Smad2/3 in the linker region.
Project description:Tumor-associated neutrophils are found in many types of cancer and are often reported to contribute to negative outcomes. Several studies have shown that the presence of TGF-β in the tumor microenvironment contributes to the skewing of neutrophils to have a more pro-tumor phenotype. However, the direct effects of TGF-β on neutrophil signaling and migration are unclear. We sought to characterize TGF-β signaling in both primary human neutrophils and the neutrophil-like cell line HL-60 and determine whether TGF-β directly induces neutrophil migration. We found that TGF-β1 does not induce neutrophil migration in either a transwell or an underagarose migration assay. However, TGF-β1 does activate signals canonically through SMAD3 and noncanonically through ERK1/2 in neutrophils in a time and dose-dependent manner. Additionally, TGF-β1 present in the tumor-conditioned media (TCM) is responsible for SMAD3 activation. Moreover, we discovered that TCM from aggressive breast cancer cells induces neutrophils to secrete leukotriene B4 (LTB4), which is a lipid mediator important for amplifying neutrophil recruitment. However, we found that TGF-β1 alone does not induce secretion of LTB4. We next performed RNA-sequencing to evaluate the effects of TGF-β1 and TCM on the neutrophil transcriptome. We found that TGF-β1 and TCM result in changes in gene transcription in HL-60 cells, specifically of two pro-tumor genes OSM and VEGFA. Together, our findings characterize the effects of TGF-β1 on neutrophil signaling, migration, and gene expression that can be applied to understanding the changes in neutrophils that occur in the tumor microenvironment.
Project description:Recent studies demonstrate that Ca2+ signaling has an important role in EMT. Use of Ca2+ blockers such as 2APB can inhibit cell migration induced by TGF-β. Interestingly, we see an unexpected increase in Snail expression upon Ca2+ blocker treatment of both MCF10A and NMuMG cells; this increase is not observed with 2APB treatment alone. Therefore, we believe that 2APB plays a synergistic role with TGF-β in Snail induction. We propose to investigate the gene networks that change following 2APB +TGF-β treatment.
Project description:In order to identify the genes that are regulated by TGF-beta in glioma, we serum starved two glioma cell lines, U373MG and U87MG, for 16h and we treated them with vehicle,100pM TGF-beta, 2uM inhibitor of the TGF-beta Receptor I(TbRI)(LY2109761), or both 100pM TGF-beta plus 2uM TbRI for 3h. Then, cell were collected and total RNA was extracted.
Project description:Advanced ovarian cancer is the most lethal gynecologic malignancy in the United States. Ovarian cancer cells are known to have diminished response to TGF-beta, but it remains unclear whether TGF-beta can modulate ovarian cancer cell growth in an indirect manner through cancer-associated fibroblasts (CAFs). Using transcriptome profiling analyses on TGF-beta-treated ovarian fibroblasts, we identified a TGF-beta-responsive gene signature in ovarian fibroblasts. Identifying TGF-beta-regulated genes in the ovarian microenvironment helps in understanding the role of TGF-beta in ovarian cancer progression. The human telomerase-immortalized ovarian fibroblast line NOF151 was treated with 5ng/mL of either TGF-beta-1 or TGF-beta-2. Total RNA was isolated from control samples and TGF-beta-treated fibroblasts samples at 48 hours post-treatment, followed by cDNA synthesis, IVT and biotin labeling. Samples were then hybridized onto Affymetrix Human Genome U133 Plus 2.0 microarrays. For each treatment group, three independent samples were prepared for the microarray experiment.
Project description:TGF-beta plays multiple functions in a board range of cellular responses such as proliferation, differentiation, motility and survival by activating several cellular signaling pathways, including Smads and MAP kinases (Erk, JNK and p38). In particular, TGF-beta can activate pro- or anti-apoptotic signals depending on the target cells. We found that blockage of JNK activation sensitized mouse B lymphoma derived A20 cells to TGF-beta-induced apoptosis. These results suggest that TGF-beta activate JNK to inhibit the activation of death signal that is simultaneously activated by TGF-beta. We used microarrays to gain insight into the effects of JNK inhibition on gene expression in TGF-b-stimulated A20 cells and identified JNK-dependent TGF-beta inducible genes. Experiment Overall Design: The following six samples were prepared: untreated A20 cells (non-stimulated, DMSO): A20 cells cultured with SP600125 for 24 h (non-stimulated, SP600125): A20 cells stimulated with TGF-beta for 12 h (TGF-beta 12 h, DMSO) and 24 h (TGF-beta 24 h, DMSO): and A20 cells stimulated with TGF-beta in the presence of SP600125 for 12 h (TGF-beta 12 h, SP600125) and 24 h (TGF-beta 24 h, SP600125), respectively. Total RNA was prepared and hybridized to the Affymetrix Mouse Genome 430 2.0 array. Genes whose expression was increased by more than 2-fold at either 12 or 24 h after TGF-beta stimulation were identified as TGF-beta inducible genes. Amongst them, we identified genes whose induction levels were reduced by more than 75% by co-treatment with the JNK inhibitor SP600125.
Project description:Global expression profile of human osteoblast treated with recombinant TGF-beta compared to human osteoblast treated with growth media alone Dye-swap design with 6 biological replicates. Three arrays performed with TGF-beta treated samples on channel 1 and media-alone treated on channel 2; three arrays performed with TGF-beta treated samples on channel 2 and media-alone on channel 1.