Project description:Expression data comparing the effect of I1061T NPC1 mutation and anti-CD22 treatment in iPSC-derived microglia like cells treated with NPC patient CSF.
Project description:Purkinje cells (PC) of the cerebellum degenerate in adult mice with mutations in the Niemann-Pick type C (NPC) disease 1 (Npc1) gene. We subjected BALB/c Npc1+/+ and Npc1-/- mouse cerebella from an early and a later time point of PC degeneration to a genome-wide microarray gene expression analysis. We found general underrepresentation of PC-specific transcripts, consistent with PC loss, and elevated markers of microglia activation at the later time point. Experiment Overall Design: 12 BALB/c Npc1 mice of the two ages P21 and P49 and the two genotypes Npc1+/+ and Npc1-/- were used, 3 replicates for each age and genotype. The animals were of the same breed and lived under identical housing conditions. All except one animal were female. The animals were not further treated, but only sacrificed at P21 or P49.
Project description:Niemann-Pick type C (NPC) disease is a rare neurodegenerative disorder mainly caused by autosomal recessive mutations in Npc1 which result in abnormal late endosomal/lysosomal lipid storage. Although microgliosis is one of the prominent pathological features, consequences of NPC1 loss on microglial function and disease outcome remain largely unknown. Here, we provide an in-depth characterization of microglial proteomic signatures and phenotypes in an NPC1-deficient (Npc1-/-) murine model. We demonstrate that microglial defects, including enhanced phagocytosis and impaired lipid trafficking, occur early in the NPC pathological cascade and precede neuronal death. Compromised microglial function during Npc1-/- mouse development is reflected by enhanced synaptic pruning and deficient turnover of myelin. Accumulation of the undigested myelin occurs mainly within multi-vesicular bodies (MVBs) of Npc1-/- microglia and not within lysosomes. This is in agreement with the impairments in recycling of myelin into lipid droplets. Macrophages of NPC patients displayed similar molecular and functional alterations as murine Npc1-/- microglia, strengthening the role of NPC1 in immune homeostasis. Generated ex vivo assays using patient macrophages are novel promising clinical tools to monitor the progression and therapeutic efficacy in NPC patients.
Project description:Niemann-Pick type C (NPC) disease is a rare neurodegenerative disorder mainly caused by autosomal recessive mutations in Npc1 which result in abnormal late endosomal/lysosomal lipid storage. Although microgliosis is one of the prominent pathological features, consequences of NPC1 loss on microglial function and disease outcome remain largely unknown. Here, we provide an in-depth characterization of microglial proteomic signatures and phenotypes in an NPC1-deficient (Npc1-/-) murine model. We demonstrate that microglial defects, including enhanced phagocytosis and impaired lipid trafficking, occur early in the NPC pathological cascade and precede neuronal death. Compromised microglial function during Npc1-/- mouse development is reflected by enhanced synaptic pruning and deficient turnover of myelin. Accumulation of the undigested myelin occurs mainly within multi-vesicular bodies (MVBs) of Npc1-/- microglia and not within lysosomes. This is in agreement with the impairments in recycling of myelin into lipid droplets. Macrophages of NPC patients displayed similar molecular and functional alterations as murine Npc1-/- microglia, strengthening the role of NPC1 in immune homeostasis. Generated ex vivo assays using patient macrophages are novel promising clinical tools to monitor the progression and therapeutic efficacy in NPC patients.
Project description:Purkinje cells (PC) of the cerebellum degenerate in adult mice with mutations in the Niemann-Pick type C (NPC) disease 1 (Npc1) gene. We subjected BALB/c Npc1+/+ and Npc1-/- mouse cerebella from an early and a later time point of PC degeneration to a genome-wide microarray gene expression analysis. We found general underrepresentation of PC-specific transcripts, consistent with PC loss, and elevated markers of microglia activation at the later time point. Keywords: Niemann-Pick type C, Purkinje cell degeneration
Project description:Using prime editing, we generated an isogenic line of an iPSC line of an individual with a pathogenic KCNQ2 R201C mutation. WGS on the mutant line and two isogenic clones was performed to identify potential off target effects
Project description:the study aims to describe the modifications occurring the microglia isolated from NPC1 disease mouse model using a transcriptomic and phenotypic approach. The analysis is also performed on animal treated with the reference drug HPBCD, currently under clinical trial in human.
Project description:Iron accumulation in microglia has been observed in Alzheimer’s disease and other neurodegenerative disorders and is thought to contribute to disease progression through various mechanisms including neuroinflammation. To study the interaction between iron accumulation and inflammation, we treated human induced pluripotent stem cell-derived microglia (iPSC-MG) with an increasing concentration of iron, in combination with inflammatory stimuli such as interferon gamma and amyloid β, and performed RNA sequencing.