Project description:Chinook salmon (Oncorhynchus tshawytscha) display the greatest variability of return times to freshwater of all Pacific salmon. Populations return to freshwater for spawning at many different times of year, resulting in segregated populations that may use differing molecular pathways for these large behavioral and physiological differences. Using a population of Chinook from California’s Central Valley, we sought to generate novel expressed sequences using Long Serial Analysis of Gene Expression (LongSAGE). We constructed three LongSAGE libraries from brains of samples caught in the spring and fall in freshwater and from the ocean. Using cDNA libraries from Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), we were able to assign 59% of putatively differentially expressed tags to genes. Additionally, we tested the expression levels of seven genes, indicated by LongSAGE to be putatively differentially expressed between the fall and spring, and found none significantly differentially expressed. This study is the first to apply LongSAGE to salmon and provides a framework for conducting future research on gene expression differences between Chinook salmon of different populations, as well as underlying mechanisms of differing physiology and behavior. Keywords: seasonal difference
Project description:Thermal stress is a serious and growing challenge facing Chinook salmon (Oncorhynchus tshawytscha) living in the southern portion of their native range. River alterations have increased the likelihood that juveniles will be exposed to warm water temperatures during their freshwater life stage, which can negatively impact survival, growth, and development and poses a threat to dwindling salmon populations. In order to better understand how acute thermal stress affects the biology of salmon, we performed a transcriptional analysis of gill tissue from unacclimated Chinook juveniles exposed to short periods at water temperatures ranging from ideal to potentially lethal. Reverse transcribed RNA libraries were sequenced on the Illumina HiSeq2000 platform and a de novo reference transcriptome was created. Differentially expressed transcripts were annotated using Blast2GO and relevant gene clusters were identified.
Project description:Chinook salmon (Oncorhynchus tshawytscha) display the greatest variability of return times to freshwater of all Pacific salmon. Populations return to freshwater for spawning at many different times of year, resulting in segregated populations that may use differing molecular pathways for these large behavioral and physiological differences. Using a population of Chinook from California’s Central Valley, we sought to generate novel expressed sequences using Long Serial Analysis of Gene Expression (LongSAGE). We constructed three LongSAGE libraries from brains of samples caught in the spring and fall in freshwater and from the ocean. Using cDNA libraries from Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), we were able to assign 59% of putatively differentially expressed tags to genes. Additionally, we tested the expression levels of seven genes, indicated by LongSAGE to be putatively differentially expressed between the fall and spring, and found none significantly differentially expressed. This study is the first to apply LongSAGE to salmon and provides a framework for conducting future research on gene expression differences between Chinook salmon of different populations, as well as underlying mechanisms of differing physiology and behavior. Keywords: seasonal difference Single individuals were used to construct each LongSAGE library. The fall, spring and ocean samples were then compared between each other and examined for differences in the number of tags observed.
Project description:Ovarian fluid was collected from 6 adult female Chinook salmon during their annual spawning run. Two replicates were analyzed for each ovarian fluid sample fraction using 80 and 100 minute gradients, respectively. Protein abundances were estimated using iTRAQ.
Project description:We examined adaptive morphological divergence and epigenetic variation in genetically impoverished asexual populations of a freshwater snail, Potamopyrgus antipodarum from distinct environments. These populations exhibit environment-specific adaptive divergence in shell shape and significant genome wide DNA methylation differences among differentially adapted lake and fast water flow river populations. The epigenetic variation correlated with adaptive phenotypic variation in rapidly adapting asexual animal populations. This provides one of the first examples of environmentally-driven differences in epigenetics that associates with adaptive phenotypic divergence.
Project description:We examined adaptive morphological divergence and epigenetic variation in genetically impoverished asexual populations of a freshwater snail, Potamopyrgus antipodarum from distinct environments. These populations exhibit environment-specific adaptive divergence in shell shape and significant genome wide DNA methylation differences among differentially adapted lake and fast water flow river populations. The epigenetic variation correlated with adaptive phenotypic variation in rapidly adapting asexual animal populations. This provides one of the first examples of environmentally-driven differences in epigenetics that associates with adaptive phenotypic divergence.