Project description:Patient-Derived Xenografts from primary (PNPCa) and metastatic (LuCaP series) prostate tumors have been implanted in immunocompromised mice and then subjected to PolyA+ RNA-sequencing.
Project description:A set of 17 prostate cancer patient-derived xenografts (PDX, Lin et al 2014, Cancer research) was analyzed by mass spectrometry-based proteomics to characterize the effects of castration in vivo, and the proteome differences between NEPC and prostate adenocarcinomas.
Project description:With the advent of potent second-line anti-androgen therapy, we and others have observed an increased incidence of androgen receptor (AR)-null small cell or neuroendocrine prostate cancer (SCNPC) in metastatic castration-resistant prostate cancer (mCRPC). Additionally, we have detected upregulated expression of MET and RET transcripts in SCNPC metastases relative to adenocarcinoma. Our study was designed to determine the effect of cabozantinib, a multi-targeted tyrosine kinase inhibitor that inhibits MET, RET and VEGFR2, on SCNPC patient-derived xenografts (PDX) in vivo. Surveillance of SU2C and University of Washington rapid autopsy mCRPC cohorts through RNA-Seq revealed that increased MET expression significantly correlated with loss of AR expression and activity. In vitro treatment of SCNPC PDX cells with AMG 337 had no impact on cell viability in LuCaP 93 (MET+/RET+) and LuCaP 173.1 (MET-/RET-), whereas cabozantinib decreased cell viability in LuCaP 93, but not in LuCaP 173.1. Notably, tumor volume was significantly decreased (p<0.001) with cabozantinib treatment in SCID mice bearing LuCaP 93 and LuCaP 173.1 tumors. Tissue analysis indicated that tumor cell proliferation was not inhibited by cabozantinib, but that cabozantinib decreased microvessel density (CD31) in LuCaP 93 (p<0.001) and LuCaP 173.1 (p<0.01) tumors. RNA-Seq and gene set enrichment analysis determined that hypoxia and glycolysis pathways were increased in cabozantinib treated tumors relative to control tumors. Thus, cabozantinib inhibited tumor growth in MET+/RET+ LuCaP 93 and MET-/RET- LuCaP 173.1 tumors in vivo and this activity was independent of MET or RET expression in LuCaP 173.1. Our data suggest that the most likely mechanism of tumor growth suppression is through disruption of the stromal architecture and cabozantinib may represent a potential therapy for patients with metastatic disease in tumor phenotypes that have a significant dependence on the tumor vasculature for survival and proliferation.
Project description:We assembled a prostate xenograft interactome from a large data set with 128 RNA sequencing expression profiles generated through administration of 13 small molecule perturbagens in vivo to 5 distinct and genetically diverse LuCaP xenograft lines (LuCaP 73, LuCaP77, LuCaP 78, LuCaP 81, LuCaP 147), with half of the xenograft samples collected from hosts castrated for 1 week.
Project description:Resistance to androgen deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) of adenocarcinoma (AdCa) origin that can transform to emergent aggressive variant prostate cancer (AVPC) which has neuroendocrine (NE)-like features. To this end, we used LuCaP patient-derived xenograft (PDX) tumors, clinically relevant models that reflects and retains key features of the tumor from advanced prostate cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. When we compared 15 NE versus 33 AdCa PDX samples, we identified 309 unique proteins and 476 unique phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish these two phenotypes. Assessment of protein and RNA concordance from these tumors revealed increased dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa.
Keywords: Proteomics, phosphoproteomics, Neuroendocrine, Adenocarcinoma, biomarkers, surfaceome, secretome, blood proteins, prostate cancer, patient-derived xenograft
Project description:Resistance to androgen deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) of adenocarcinoma (AdCa) origin that can transform to emergent aggressive variant prostate cancer (AVPC) which has neuroendocrine (NE)-like features. To this end, we used LuCaP patient-derived xenograft (PDX) tumors, clinically relevant models that reflects and retains key features of the tumor from advanced prostate cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. When we compared 15 NE versus 33 AdCa PDX samples, we identified 309 unique proteins and 476 unique phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish these two phenotypes. Assessment of protein and RNA concordance from these tumors revealed increased dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa.
Project description:To identify the molecular signature associated with abiraterone acetate (AA) response and mechanisms underlying AA resistance in castration-resistant prostate cancer patient-derived xenografts (PDXs).
Project description:In order to advance our understanding of prostate cancer biology and identify new effective treatments we have established and characterized multiple advanced prostate cancer patient-derived xenografts that mimic well the disease in patients.
Project description:In order to advance our understanding of prostate cancer biology and identify new effective treatments we have established and characterized multiple advanced prostate cancer patient-derived xenografts that mimic well the disease in patients.