Project description:Purpose: Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) and soybean cyst nematode, Heterodera glycines Ichinohe, (SCN) are the two most economically important pests of soybean, Glycine max (L.) Merr., in the Midwest. Although the soybean aphid is an aboveground pest and SCN is a belowground pest there is evidence that concomitant infestations result in improved SCN reproduction. This study is aimed to characterize the three-way interactions among soybean, soybean aphid and SCN using demographic and genetic datasets. Results: More than 1.1 billion reads (61.4 GB) of transcriptomic data were yielded from 47 samples derived from the experiment using whole roots of G. max. The phred quality scores per base for all the samples were higher than 30. The GC content ranged from 43 to 45% and followed the normal distribution. After trimming, more than 99% of the reads were retained as the clean and good quality reads. Upon mapping these reads, we obtained high mapping rate ranging from 73.8% to 94.3%. Among the mapped reads, 67.1% to 87.6% reads were uniquely mapped. Conclusions: The comprehensive understanding of these transcriptome data would help in understanding the molecular interactions among soybean, A. glycines, and H. glycines. The use of multifaceted bioinformatics approaches could facilitate finding candidate genes and their function that might play a crucial role in various pathways for host resistance against both soybean aphids and SCN. For differential gene expression analysis, EdgeR, limma, and DEseq2 could be used. Apart from standalone tools like iDEP, Galaxy (https://usegalaxy.org), CyVerse (http://www.cyverse.org), and MeV (http://mev.tm4.org) could also be used for both analysis and visualization of RNA- seq data.
Project description:Gut microbiota and the circadian clock both regulate metabolism. The circadian clock and associated feeding rhythms were shown to impact on the microbial community. However, to what extent gut microbiota reciprocally affect daily rhythms of gene expression and physiology in the host remains elusive. Here, we analyzed the transcriptomes of male and female germ-free mice. While this revealed subtle changes in circadian clock gene expression in liver, intestine, and white adipose tissue, germ-free mice showed considerably altered expression of genes associated to rhythmic physiology. Strikingly, absence of microbiome severely compromised liver sex-dimorphism at the transcriptome and metabolome level. Their sex-specific rhythmicity was strongly attenuated. The resulting feminization of male and masculinization of female hepatic gene expression in germ-free animals is likely caused by altered sex-dimorphism in sex and growth hormone secretion, linked to differential activation of xenobiotic receptors. This defines a novel mechanism by which the gut microbiome regulates host metabolism.
Project description:Gut microbiota and the circadian clock both regulate metabolism. The circadian clock and associated feeding rhythms were shown to impact on the microbial community. However, to what extent gut microbiota reciprocally affect daily rhythms of gene expression and physiology in the host remains elusive. Here, we analyzed the transcriptomes of male and female germ-free mice. While this revealed subtle changes in circadian clock gene expression in liver, intestine, and white adipose tissue, germ-free mice showed considerably altered expression of genes associated to rhythmic physiology. Strikingly, absence of microbiome severely compromised liver sex-dimorphism at the transcriptome and metabolome level. Their sex-specific rhythmicity was strongly attenuated. The resulting feminization of male and masculinization of female hepatic gene expression in germ-free animals is likely caused by altered sex-dimorphism in sex and growth hormone secretion, linked to differential activation of xenobiotic receptors. This defines a novel mechanism by which the gut microbiome regulates host metabolism.
Project description:Gut microbiota and the circadian clock both regulate metabolism. The circadian clock and associated feeding rhythms were shown to impact on the microbial community. However, to what extent gut microbiota reciprocally affect daily rhythms of gene expression and physiology in the host remains elusive. Here, we analyzed the transcriptomes of male and female germ-free mice. While this revealed subtle changes in circadian clock gene expression in liver, intestine, and white adipose tissue, germ-free mice showed considerably altered expression of genes associated to rhythmic physiology. Strikingly, absence of microbiome severely compromised liver sex-dimorphism at the transcriptome and metabolome level. Their sex-specific rhythmicity was strongly attenuated. The resulting feminization of male and masculinization of female hepatic gene expression in germ-free animals is likely caused by altered sex-dimorphism in sex and growth hormone secretion, linked to differential activation of xenobiotic receptors. This defines a novel mechanism by which the gut microbiome regulates host metabolism.
Project description:Gut microbiota and the circadian clock both regulate metabolism. The circadian clock and associated feeding rhythms were shown to impact on the microbial community. However, to what extent gut microbiota reciprocally affect daily rhythms of gene expression and physiology in the host remains elusive. Here, we analyzed the transcriptomes of male and female germ-free mice. While this revealed subtle changes in circadian clock gene expression in liver, intestine, and white adipose tissue, germ-free mice showed considerably altered expression of genes associated to rhythmic physiology. Strikingly, absence of microbiome severely compromised liver sex-dimorphism at the transcriptome and metabolome level. Their sex-specific rhythmicity was strongly attenuated. The resulting feminization of male and masculinization of female hepatic gene expression in germ-free animals is likely caused by altered sex-dimorphism in sex and growth hormone secretion, linked to differential activation of xenobiotic receptors. This defines a novel mechanism by which the gut microbiome regulates host metabolism.
Project description:Tyrosine (Tyr, Y) and phenylalanine (Phe, F) synthesis is shared by the pea aphid and its symbiont Buchnera aphidicola.These aromatic amino acids are essential for the pea aphid growth and development. To characterize the molecular mechanisms, at gene transcriptional level, underlying this symbiotic integrated network pea aphids (Acyrthosyphon pisum, clone LL01) were reared on (i) standard artificial diet (AP3) and (ii) on the same AP3 medium depleted of Tyr (Y) and Phe (F). From each of the two groups, aphids were collected at specific time points and dissected: 12 h (D0), 1 day (D1), 2 days (D2), 3 days (D3), 4 days (D4), 5 days (D5) and 7 days (D7). Total RNA, to be used in gene expression analysis by arrays, was extracted, under the two rearing conditions, from two tissues: gut [from 20 aphids per sample at all 7 time points] and bacteriocytes [from 25 aphids per sample at 4 time points: 3 days (D3), 4 days (D4), 5 days (D5) and 7 days (D7)]. At each time point we included three biological replicates.
Project description:The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr-/- mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including interleukin-6, tumor necrosis factor-α and interleukin-1β), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool for deciphering the chemical biology of the gut microbiome and might advance microbiome-targeted therapeutics.
Project description:Ticks are obligate hematophagous arthropods that transmit a wide range of pathogens to humans as well as wild and domestic animals. They also harbor a non-pathogenic microbiota, although our previous study has shown that the diverse bacterial microbiome in the midgut of Ixodes ricinus is quantitatively poor and lacks a core microbe. In artificial infections by capillary feeding of ticks with two model bacteria (Gram-positive Micrococcus luteus and Gram-negative Pantoea sp.), rapid clearance of these microbes from the midgut was observed, indicating the presence of active immune mechanisms in this organ. In the current study, RNA-seq analysis was performed on the midgut of I. ricinus females inoculated with either M. luteus or Pantoea sp. or with sterile water as a control. While no immune-related transcripts were upregulated by microbial inoculation compared to the sterile control, capillary feeding itself triggered dramatic transcriptional changes in the tick midgut. Manual curation of the transcriptome from the midgut of unfed I. ricinus females, complemented by proteomic analysis, revealed the presence of several constitutively expressed putative antimicrobial peptides (AMPs) that are independent of microbial stimulation and are referred to here as ‘guard’ AMPs. These included two types of midgut-specific defensins, two different domesticated amidase effector 2 (Dae2), microplusin/ricinusin-related molecules, two lysozymes and two gamma interferon-inducible lysosomal thiol reductases (GILTs). The in vitro antimicrobial activity assays of two synthetic mature defensins, defensin 1 and defensin 8, confirmed their specificity against Gram-positive bacteria showing exceptional potency to inhibit the growth of M. luteus at nanomolar concentrations. The antimicrobial activity of midgut defensins is likely part of a multicomponent system responsible for the rapid clearance of bacteria in the tick midgut. Further studies are needed to evaluate the role of other identified ‘guard‘ AMPs in controlling microorganisms entering the tick midgut.
Project description:To allow estimation of the complexity of the antennal transcriptome between sexes as well as in comparison with a non-antennal tissue, microarrays were designed based on an assembly of new 454 sequence data from the antenna and publicly available data including 454 data from the larval midgut. The microarrays were hybridized with samples generated from the repsecitve tissues from 3 (antenna) and 5 (midgut) animals per sample, with four independent samples per sex (antenna) and tissue (midgut). Sequence assembly of included Manduca antennal and gut ESTs (63) and all publicly available Genbank sequences was used with eArray (Agilent Technologies) for the design of 4 x 44K microarrays based on 60mer oligo probes. For sex-specific antennal microarray hybridizations, RNA of three individuals of one sex was pooled per preparation, and 5 larvae each were dissected for gut tissue isolation with four biological replicates per sex (antennae) and tissue (gut), respectively. Double purified total RNA was added to Agilent Technologies spike-in RNA and labeld using QuickAmp Amplification kit (Agilent Technologies) and the Kreatech ULS Fluorescent Labeling Kit with cyanine 3-CTP dye following the manufacturer´s instructions. Amplified cRNA samples were used for microarray hybridization, scanned with the Agilent Microarray Scanner and data was extracted from TIFF images with Agilent Feature Extraction software version 9.1. Raw data output files were analyzed using the GeneSpring GX11 and GeneSifter microarray analysis softwares.
Project description:The gut microbiome has been implicated in multiple human chronic gastrointestinal (GI) disorders. Determining its mechanistic role in disease pathogenesis has been difficult due to the apparent disconnect between animal and human studies and a lack of an integrated multi-omics view in the context of disease-specific physiological changes. We integrated longitudinal multi-omics data from the gut microbiome, metabolome, host epigenome and transcriptome in the context of irritable bowel syndrome (IBS) host physiology. We identified IBS subtype-specific and symptom-related variation in microbial composition and function. A subset of identified changes in microbial metabolites correspond to host physiological mechanisms that are relevant to IBS. By integrating multiple data layers, we identified purine metabolism as a novel host-microbial metabolic pathway in IBS with translational potential. Our study highlights the importance of longitudinal sampling and integrating complementary multi-omics data to identify functional mechanisms that can serve as therapeutic targets in a comprehensive treatment strategy for chronic GI diseases.