Project description:The ongoing COVID-19 pandemic caused by SARS-CoV-2 has affected millions of people worldwide and has significant implications for public health. Host transcriptomics profiling provides comprehensive understanding of how the virus interacts with host cells and how the host responds to the virus. COVID-19 disease alters the host transcriptome, affecting cellular pathways and key molecular functions. To contribute to the global effort to understand the virus’s effect on host cell transcriptome, we have generated a dataset from nasopharyngeal swabs of 35 individuals infected with SARS-CoV-2 from the Campania region in Italy during the three outbreaks, with different clinical conditions. This dataset will help to elucidate the complex interactions among genes and can be useful in the development of effective therapeutic pathways
Project description:The SARS-CoV-2 virus is continuously evolving, with appearance of new variants characterized by multiple genomic mutations, some of which can affect functional properties, including infectivity, interactions with host immunity, and disease severity. The rapid spread of new SARS-CoV-2 variants has highlighted the urgency to trace the virus evolution, to help limit its diffusion, and to assess effectiveness of containment strategies. We propose here a PCR-based rapid, sensitive and low-cost allelic discrimination assay panel for the identification of SARS-CoV-2 genotypes, useful for detection in different sample types, such as nasopharyngeal swabs and wastewater. The tests carried out demonstrate that this in-house assay, whose results were confirmed by SARS-CoV-2 whole-genome sequencing, can detect variations in up to 10 viral genome positions at once and is specific and highly sensitive for identification of all tested SARS-CoV-2 clades, even in the case of samples very diluted and of poor quality, particularly difficult to analyze.
Project description:SARS-CoV-2 can generate viral microRNAs (v-miRNAs) that target host gene expression. This study used small RNAseq to identify the v-miRNAs present in COVID-19 patients' nasopharyngeal swabs. The study identified a specific conserved v-miRNA sequence (CoV2-miR-O8) unique to SARS-CoV-2 that is highly present in COVID-19 patients' samples, interacts with Argonaute, and has features consistent with Dicer and Drosha generation. CoV2-miR-O8 is predicted to target specific human genes and can be detected by RTPCR assays in patients.
Project description:A novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19 and continues to be a global health challenge. To understand viral disease biology, we have carried out proteo-genomic analysis using next generation sequencing (NGS) and mass-spectrometry on nasopharyngeal swabs of COVID-19 patients to examine clinical genome and proteome. Our proteomic analysis, for the first time identified 13 different SARS-CoV-2 proteins from the clinical swabs. Additionally, host proteome analysis revealed several key host proteins to be uniquely expressed in COVID-19 patients. Besides revealing aspects of host-virus pathogenesis, our study opens avenues to develop better diagnostic markers and therapeutic strategies.
Project description:Healthcare workers were recruited at St Bartholomew’s Hospital, London, UK in the week of lockdown in the United Kingdom (between 23rd and 31st March 2020). Participants underwent weekly evaluation using a questionnaire and biological sample collection (including serological assays) for up to 16 weeks when attending for work and self-declared as fit to attend work at each visit, with further follow up samples collected at 24 weeks. Blood RNA sequencing data was to be used to identify host-response biomarkers of early SARS-CoV-2 infection, to evaluate existing blood transcriptomic signatures of viral infection, and to describe the underlying biology during SARS-CoV-2 infection. This submission includes a total of 172 blood RNA samples from 99 participants. Of these, 114 samples (including 16 convalescent samples collected 6 months after infection) were obtained from 41 SARS-CoV-2 cases, with the remaining 58 from uninfected controls. Participants with available blood RNA samples who had PCR-confirmed SARS-CoV-2 infection during follow-up were included as ‘cases’. Those without evidence of SARS-CoV-2 infection on nasopharyngeal swabs and who remained seronegative by both Euroimmun anti S1 spike protein and Roche anti nucleocapsid protein throughout follow-up were included as uninfected controls. ‘Cases’ include all available RNA samples, including convalescent samples at week 24 of follow-up for a subset of participants. For uninfected controls, we included baseline samples only. Sample class denotes weekly interval to positive SARS-CoV-2 PCR; non-infected controls (NIC); convalescent samples (Conv)_.
Project description:Limited CITE-seq antibody panel and 5' gene expression profiling of human nasopharyngeal cells collected with flocked swabs, paired with TCR and BCR sequencing of NP lymphocytes. FACS-sorted SARS-CoV-2 antigen-specific memory B and T cells with 5' gene expression profiling and scBCR and scTCRseq.
Project description:The rapid, sensitive and specific detection of SARS-CoV-2 is critical in responding to the current COVID-19 outbreak. Here, we explore the potential of targeted mass spectrometry based proteomics for the detection of SARS-CoV-2 proteins in both research and clinical samples. First, we assessed the limit of detection for several SARS-CoV-2 proteins by parallel reaction monitoring (PRM) mass spectrometry. For Nucleocapsid the limit of detection was found to be in the mid-attomole range (0.9 x 10-12 g). Next, this PRM assay is applied to the detection of viral proteins in in vitro mucus substitutes, as well as in various clinical specimens such as nasopharyngeal swabs and sputum. In this proof-of-concept study SARS-CoV-2 proteins could unambiguously be detected in various clinical samples, suggesting that the sensitivity of this technology may be sufficiently high to further explore its potential role in diagnostics.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), continues to be a pressing health concern. In this study, we investigated the impact of SARS-CoV-2 infection on host microRNA (miRNA) populations in three human lung-derived cell lines, as well as in nasopharyngeal swabs from SARS-CoV-2–infected individuals. We did not detect any major and consistent differences in host miRNA levels after SARS-CoV-2 infection. However, we unexpectedly discovered a viral miRNA-like small RNA, named CoV2-miR-O7a (for SARS-CoV-2 miRNA-like ORF7a-derived small RNA). Its abundance ranges from low to moderate as compared to host miRNAs and it associates with Argonaute proteins—core components of the RNA interference pathway. We identify putative targets for CoV2-miR-O7a, including Basic Leucine Zipper ATF-Like Transcription Factor 2 (BATF2), which participates in interferon signaling. We demonstrate that CoV2-miR-O7a production relies on cellular machinery, yet is independent of Drosha protein, and is enhanced by the presence of a strong and evolutionarily conserved hairpin formed within the ORF7a sequence.
Project description:The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has infected over 100 million people and caused over 2.5 million deaths worldwide. Yet, the molecular mechanisms underlying the clinical manifestations of COVID-19, as well as what distinguishes them from common seasonal influenza virus and other lung injury states such as Acute Respiratory Distress Syndrome (ARDS) remains poorly understood. To address these challenges, we combined transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues, matched with spatial protein and expression profiling (GeoMx) across 357 tissue sections. These results define both body-wide and tissue-specific (heart, liver, lung, kidney, and lymph nodes) damage wrought by the SARS-CoV-2 infection, which are a function both of viral load (high vs. low) and transcriptional signatures (splicing isoforms, T-cell receptor expression, cell state regression). These findings reveal a massive disruption of cellular and transcriptional pathways from COVID-19 that can inform subsequent studies on the pathophysiology SARS-CoV-2 as well as other viruses.